onnxruntime-web
Version:
A Javascript library for running ONNX models on browsers
204 lines (183 loc) • 8.31 kB
text/typescript
// Copyright (c) Microsoft Corporation. All rights reserved.
// Licensed under the MIT License.
import { DataType } from '../../../wasm-common';
import { TensorView } from '../../tensor-view';
import { ShapeUtil } from '../../util';
import { AttributeWithCacheKey, createAttributeWithCacheKey } from '../attribute-with-cache-key';
import { ComputeContext, ProgramInfo } from '../types';
import { createTensorShapeVariables, IndicesHelper, inputVariable, outputVariable, ShaderHelper } from './common';
export interface TransposeAttributes extends AttributeWithCacheKey {
readonly perm: number[];
}
const validateInputs = (inputs: readonly TensorView[], perm: readonly number[]): void => {
if (!inputs || inputs.length !== 1) {
throw new Error('Transpose requires 1 input.');
}
if (perm.length !== 0 && perm.length !== inputs[0].dims.length) {
throw new Error(`perm size ${perm.length} does not match input rank ${inputs[0].dims.length}`);
}
};
const getAdjustedPerm = (inputRank: number, perm: number[]): number[] =>
perm.length !== 0 ? perm : [...new Array(inputRank).keys()].reverse();
const getOutputShape = (inputShape: readonly number[], perm: number[]): readonly number[] =>
ShapeUtil.sortBasedOnPerm(inputShape, getAdjustedPerm(inputShape.length, perm));
const permFunctionBody = (perm: number[], rank: number, input: IndicesHelper, output: IndicesHelper): string => {
let reverseFunc = `fn perm(i: ${output.type.indices}) -> ${input.type.indices} {
var a: ${input.type.indices};`;
for (let i = 0; i < rank; ++i) {
// input indices and output indices should always be larger or equal to 2,
// so indexer is always valid to be used on `a` and `i`.
reverseFunc += `a[${perm[i]}]=i[${i}];`;
}
return (reverseFunc += 'return a;}');
};
const squeezeShape = (shape: readonly number[], adjustedPerm: number[]): { newShape: number[]; newPerm: number[] } => {
const newShape: number[] = [];
const newPerm: number[] = [];
for (let i = 0; i < shape.length; ++i) {
if (shape[i] !== 1) {
newShape.push(shape[i]);
}
if (shape[adjustedPerm[i]] !== 1) {
newPerm.push(adjustedPerm[i]);
}
}
return { newShape, newPerm };
};
const isTransposeReshape = (perm: number[], shape: readonly number[]) => {
// As long as the dims with values > 1 stay in the same order, it's a reshape.
// Example: Shape=(1,1,1024,4096) -> perm=(2,0,3,1).
let lastPermutedAxis = 0;
for (let i = 0; i < perm.length; ++i) {
if (shape[perm[i]] === 1) {
continue;
}
if (perm[i] < lastPermutedAxis) {
return false;
}
lastPermutedAxis = perm[i];
}
return true;
};
export const createTransposeProgramInfo = (inputTensor: TensorView, permAttr: number[]): ProgramInfo => {
const inputDataType = inputTensor.dataType;
const inputRank = inputTensor.dims.length;
const perm = getAdjustedPerm(inputRank, permAttr);
const outputShape = getOutputShape(inputTensor.dims, perm);
let newInputShape = inputTensor.dims;
let newOutputShape = outputShape;
const transposeAsReshape = inputRank < 2 || isTransposeReshape(perm, inputTensor.dims);
let getShaderSource;
if (transposeAsReshape) {
getShaderSource = (shaderHelper: ShaderHelper) => {
const input = inputVariable('input', inputDataType, newInputShape, 4);
const output = outputVariable('output', inputDataType, newOutputShape, 4);
return `
${shaderHelper.registerUniform('output_size', 'u32').declareVariables(input, output)}
${shaderHelper.mainStart()}
${shaderHelper.guardAgainstOutOfBoundsWorkgroupSizes('uniforms.output_size')}
output[global_idx] = input[global_idx];
}`;
};
return {
name: 'TransposeCopy',
shaderCache: { inputDependencies: ['type'] },
getRunData: () => {
const outputSize = ShapeUtil.size(outputShape);
return {
outputs: [{ dims: outputShape, dataType: inputTensor.dataType }],
dispatchGroup: { x: Math.ceil(outputSize / 64 /* workgroup size */ / 4 /* components */) },
programUniforms: [{ type: DataType.uint32, data: Math.ceil(outputSize / 4) }],
};
},
getShaderSource,
};
}
const { newShape, newPerm } = squeezeShape(inputTensor.dims, perm);
const channelsLast = ShapeUtil.areEqual(newPerm, [2, 3, 1]);
const channelsFirst = ShapeUtil.areEqual(newPerm, [3, 1, 2]);
const useShared = newShape.length === 2 || channelsLast || channelsFirst;
if (useShared) {
newInputShape = channelsLast
? [newShape[0], newShape[1] * newShape[2]]
: channelsFirst
? [newShape[0] * newShape[1], newShape[2]]
: newShape;
newOutputShape = [newInputShape[1], newInputShape[0]];
const tileSize = 16;
getShaderSource = (shaderHelper: ShaderHelper) => {
const input = inputVariable('a', inputDataType, newInputShape.length);
const output = outputVariable('output', inputDataType, newOutputShape.length);
return `
${shaderHelper.registerUniform('output_size', 'u32').declareVariables(input, output)}
var<workgroup> tile : array<array<${output.type.value}, ${tileSize + 1}>, ${tileSize}>;
${shaderHelper.mainStart([tileSize, tileSize, 1])}
let stride = (uniforms.output_shape[1] - 1) / ${tileSize} + 1;
let workgroup_id_x = workgroup_index % stride;
let workgroup_id_y = workgroup_index / stride;
let input_col = workgroup_id_y * ${tileSize}u + local_id.x;
let input_row = workgroup_id_x * ${tileSize}u + local_id.y;
if (input_row < uniforms.a_shape[0] && input_col < uniforms.a_shape[1]) {
tile[local_id.y][local_id.x] = ${input.getByIndices(`${input.type.indices}(input_row, input_col)`)};
}
workgroupBarrier();
let output_col = workgroup_id_x * ${tileSize}u + local_id.x;
let output_row = workgroup_id_y * ${tileSize}u + local_id.y;
if (output_row < uniforms.output_shape[0] && output_col < uniforms.output_shape[1]) {
${output.setByIndices(`${output.type.indices}(output_row, output_col)`, 'tile[local_id.x][local_id.y]')}
}
}`;
};
return {
name: 'TransposeShared',
shaderCache: { inputDependencies: ['type'] },
getRunData: () => {
const outputSize = ShapeUtil.size(outputShape);
return {
outputs: [{ dims: outputShape, dataType: inputTensor.dataType }],
dispatchGroup: { x: Math.ceil(newOutputShape[1] / tileSize), y: Math.ceil(newOutputShape[0] / tileSize) },
programUniforms: [
{ type: DataType.uint32, data: outputSize },
...createTensorShapeVariables(newInputShape, newOutputShape),
],
};
},
getShaderSource,
};
}
getShaderSource = (shaderHelper: ShaderHelper) => {
const input = inputVariable('a', inputDataType, newInputShape.length);
const output = outputVariable('output', inputDataType, newOutputShape.length);
return `
${shaderHelper.registerUniform('output_size', 'u32').declareVariables(input, output)}
${permFunctionBody(perm, inputRank, input, output)}
${shaderHelper.mainStart()}
${shaderHelper.guardAgainstOutOfBoundsWorkgroupSizes('uniforms.output_size')}
let indices = ${output.offsetToIndices('global_idx')};
let aIndices = perm(indices);
${output.setByOffset('global_idx', input.getByIndices('aIndices'))}
}`;
};
return {
name: 'Transpose',
shaderCache: { hint: `${permAttr}`, inputDependencies: ['rank'] },
getRunData: () => {
const outputSize = ShapeUtil.size(outputShape);
return {
outputs: [{ dims: outputShape, dataType: inputTensor.dataType }],
dispatchGroup: { x: Math.ceil(outputSize / 64 /* workgroup size */) },
programUniforms: [
{ type: DataType.uint32, data: outputSize },
...createTensorShapeVariables(newInputShape, newOutputShape),
],
};
},
getShaderSource,
};
};
export const transpose = (context: ComputeContext, attributes: TransposeAttributes): void => {
validateInputs(context.inputs, attributes.perm);
context.compute(createTransposeProgramInfo(context.inputs[0], attributes.perm));
};
export const parseTransposeAttributes = (attributes: Record<string, unknown>): TransposeAttributes =>
createAttributeWithCacheKey({ perm: attributes.perm as number[] });