onnxruntime-web
Version:
A Javascript library for running ONNX models on browsers
98 lines (79 loc) • 3.68 kB
text/typescript
// Copyright (c) Microsoft Corporation. All rights reserved.
// Licensed under the MIT License.
import { DataType } from '../../../wasm-common';
import { TensorView } from '../../tensor-view';
import { ShapeUtil } from '../../util';
import { ComputeContext, ProgramInfo } from '../types';
import { createTensorShapeVariables, inputVariable, outputVariable, ShaderHelper } from './common';
const getRepeats = (repeatsTensorView: TensorView): readonly number[] =>
Array.from(repeatsTensorView.getBigInt64Array(), Number);
const validateInputs = (inputs: readonly TensorView[]): void => {
if (!inputs || inputs.length !== 2) {
throw new Error('Tile requires 2 inputs.');
}
if (
inputs[0].dataType !== DataType.float &&
inputs[0].dataType !== DataType.float16 &&
inputs[0].dataType !== DataType.int32 &&
inputs[0].dataType !== DataType.uint32
) {
throw new Error('Tile only support float, float16, int32, and uint32 data types');
}
if (inputs[1].dataType !== DataType.int64) {
throw new Error('Tile `repeats` input should be of int64 data type');
}
if (inputs[1].dims.length !== 1) {
throw new Error('Tile `repeats` input should be 1-D');
}
const repeats: readonly number[] = getRepeats(inputs[1]);
if (repeats.length !== inputs[0].dims.length) {
throw new Error('Tile `repeats` input should have same number of elements as rank of input data tensor');
}
};
const getOutputShape = (inputShape: readonly number[], repeats: readonly number[]): readonly number[] => {
const outputShape: number[] = [];
for (let i = 0; i < inputShape.length; ++i) {
outputShape.push(inputShape[i] * repeats[i]);
}
return outputShape;
};
export const createTileProgramInfo = (inputs: readonly TensorView[], shape?: number[]): ProgramInfo => {
const inputShape = inputs[0].dims;
const repeats: readonly number[] = shape == null ? getRepeats(inputs[1]) : shape;
const outputShape = getOutputShape(inputShape, repeats);
const outputSize = ShapeUtil.size(outputShape);
const dataType = inputs[0].dataType;
const input = inputVariable('input', dataType, inputShape.length);
const output = outputVariable('output', dataType, outputShape.length);
const getShaderSource = (shaderHelper: ShaderHelper) => `
const inputShape = ${input.indices(...inputShape)};
${shaderHelper.registerUniform('output_size', 'u32').declareVariables(input, output)}
${shaderHelper.mainStart()}
${shaderHelper.guardAgainstOutOfBoundsWorkgroupSizes('uniforms.output_size')}
let output_indices = ${output.offsetToIndices('global_idx')};
var input_indices: ${input.type.indices};
for (var i = 0; i < ${inputShape.length}; i++) {
let input_dim_i = ${input.indicesGet('uniforms.input_shape', 'i')};
let input_dim_value = ${output.indicesGet('output_indices', 'i')} % input_dim_i;
${input.indicesSet('input_indices', 'i', 'input_dim_value')}
}
${output.setByOffset('global_idx', input.getByIndices('input_indices'))}
}`;
return {
name: 'Tile',
shaderCache: { hint: `${repeats}`, inputDependencies: ['rank'] },
getRunData: () => ({
outputs: [{ dims: outputShape, dataType: inputs[0].dataType }],
dispatchGroup: { x: Math.ceil(outputSize / 64 /* workgroup size */) },
programUniforms: [
{ type: DataType.uint32, data: outputSize },
...createTensorShapeVariables(inputs[0].dims, outputShape),
],
}),
getShaderSource,
};
};
export const tile = (context: ComputeContext): void => {
validateInputs(context.inputs);
context.compute(createTileProgramInfo(context.inputs), { inputs: [0] });
};