onnxruntime-web
Version:
A Javascript library for running ONNX models on browsers
147 lines (135 loc) • 5.79 kB
text/typescript
// Copyright (c) Microsoft Corporation. All rights reserved.
// Licensed under the MIT License.
import { DataType } from '../../../wasm-common';
import { TensorView } from '../../tensor-view';
import { ShapeUtil } from '../../util';
import { AttributeWithCacheKey, createAttributeWithCacheKey } from '../attribute-with-cache-key';
import { ComputeContext, ProgramInfo, ProgramUniform, TensorInfo } from '../types';
import {
createTensorShapeVariables,
getElementAt,
IndicesHelper,
inputVariable,
outputVariable,
ShaderHelper,
} from './common';
export interface SplitAttributes extends AttributeWithCacheKey {
readonly axis: number;
readonly numOutputs: number;
readonly splitSizes: number[];
}
const validateInputs = (inputs: readonly TensorView[]): void => {
if (!inputs || inputs.length < 1) {
throw new Error('too few inputs');
}
};
const createSplitAttributesFromInputs = (
inputs: readonly TensorView[],
attributes: SplitAttributes,
): SplitAttributes => {
const splitSizes: number[] = [];
let numOutputs: number = attributes.numOutputs;
if (inputs[1].dims[0] > 0) {
inputs[1].getBigInt64Array().forEach((v) => splitSizes.push(Number(v)));
numOutputs = splitSizes.length;
}
return createAttributeWithCacheKey({ numOutputs, axis: attributes.axis, splitSizes });
};
const calculateOutputIndexImpl = (numberOfTensors: number): string => `
fn calculateOutputIndex(index: u32) -> u32 {
for (var i: u32 = 0u; i < ${numberOfTensors}u; i += 1u ) {
if (index < ${getElementAt('uniforms.size_in_split_axis', 'i', numberOfTensors)}) {
return i;
}
}
return ${numberOfTensors}u;
}`;
const writeBufferDataImpl = (outputs: readonly IndicesHelper[]) => {
const numberOfTensors = outputs.length;
const codeLines: string[] = [];
for (let i = 0; i < numberOfTensors; ++i) {
const returnSnippet = outputs[i].setByIndices('indices', 'input[global_idx]');
if (numberOfTensors === 1) {
codeLines.push(returnSnippet);
} else if (i === 0) {
codeLines.push(`if (output_number == ${i}u) { ${returnSnippet} }`);
} else if (i === numberOfTensors - 1) {
codeLines.push(`else { ${returnSnippet} }`);
} else {
codeLines.push(`else if (output_number == ${i}) { ${returnSnippet} }`);
}
}
return `
fn writeBufferData(output_number: u32, indices: ${outputs[0].type.indices}, global_idx: u32) {
${codeLines.join('\n')}
}`;
};
export const createSplitProgramInfo = (inputs: readonly TensorView[], attributes: SplitAttributes): ProgramInfo => {
const inputShape = inputs[0].dims;
const inputSize = ShapeUtil.size(inputShape);
const dataType = inputs[0].dataType;
const axis = ShapeUtil.normalizeAxis(attributes.axis, inputShape.length);
const outputs = new Array<IndicesHelper>(attributes.numOutputs);
const input = inputVariable('input', dataType, inputShape.length);
const sizeInSplitAxis = new Array<number>(attributes.numOutputs);
const outputsTensorInfo: TensorInfo[] = [];
const outputShapes: number[][] = [];
let previousSum = 0;
const programUniforms: ProgramUniform[] = [{ type: DataType.uint32, data: inputSize }];
for (let i = 0; i < attributes.numOutputs; i++) {
previousSum += attributes.splitSizes[i];
sizeInSplitAxis[i] = previousSum;
const outputShape = inputShape.slice();
outputShape[axis] = attributes.splitSizes[i];
outputShapes.push(outputShape);
outputs[i] = outputVariable(`output${i}`, dataType, outputShape.length);
outputsTensorInfo.push({ dims: outputShapes[i], dataType: inputs[0].dataType });
}
programUniforms.push(
{ type: DataType.uint32, data: sizeInSplitAxis },
...createTensorShapeVariables(inputShape, ...outputShapes),
);
const getShaderSource = (shaderHelper: ShaderHelper) => `
${shaderHelper
.registerUniform('input_size', 'u32')
.registerUniform('size_in_split_axis', 'u32', sizeInSplitAxis.length)
.declareVariables(input, ...outputs)}
${calculateOutputIndexImpl(sizeInSplitAxis.length)}
${writeBufferDataImpl(outputs)}
${shaderHelper.mainStart()}
${shaderHelper.guardAgainstOutOfBoundsWorkgroupSizes('uniforms.input_size')}
var indices = ${input.offsetToIndices('global_idx')};
var index = ${input.indicesGet('indices', axis)};
let output_number = calculateOutputIndex(index);
if (output_number != 0) {
index -= ${getElementAt('uniforms.size_in_split_axis', 'output_number - 1u', sizeInSplitAxis.length)};
${input.indicesSet('indices', axis, 'index')};
}
writeBufferData(output_number, indices, global_idx);
}`;
return {
name: 'Split',
shaderCache: { hint: attributes.cacheKey, inputDependencies: ['rank'] },
getShaderSource,
getRunData: () => ({
outputs: outputsTensorInfo,
dispatchGroup: { x: Math.ceil(inputSize / 64 /* workgroup size */) },
programUniforms,
}),
};
};
export const split = (context: ComputeContext, attributes: SplitAttributes): void => {
validateInputs(context.inputs);
const updatedAttributes =
context.inputs.length === 1 ? attributes : createSplitAttributesFromInputs(context.inputs, attributes);
context.compute(createSplitProgramInfo(context.inputs, updatedAttributes), { inputs: [0] });
};
export const parseSplitAttributes = (attributes: Record<string, unknown>): SplitAttributes => {
const axis = attributes.axis as number;
const splitSizes: number[] = attributes.splitSizes as number[];
const numOutputs = (attributes.numOutputs as number) < 0 ? splitSizes.length : (attributes.numOutputs as number);
if (numOutputs !== splitSizes.length) {
throw new Error('numOutputs and splitSizes lengh must be equal');
}
return createAttributeWithCacheKey({ axis, numOutputs, splitSizes });
};