onnxruntime-web
Version:
A Javascript library for running ONNX models on browsers
229 lines (211 loc) • 8.63 kB
text/typescript
// Copyright (c) Microsoft Corporation. All rights reserved.
// Licensed under the MIT License.
import { DataType } from '../../../wasm-common';
import { TensorView } from '../../tensor-view';
import { ShapeUtil } from '../../util';
import { AttributeWithCacheKey, createAttributeWithCacheKey } from '../attribute-with-cache-key';
import { ComputeContext, ProgramInfo, ProgramUniform, TensorInfo } from '../types';
import {
createTensorShapeVariables,
getElementAt,
IndicesHelper,
inputVariable,
outputVariable,
ShaderHelper,
UniformsArrayType,
} from './common';
export interface SliceAttributes extends AttributeWithCacheKey {
readonly starts: number[];
readonly ends: number[];
readonly axes: number[];
}
const validateInputs = (inputs: readonly TensorView[], attributes: SliceAttributes): void => {
if (!inputs || inputs.length < 1) {
throw new Error('too few inputs');
}
if (attributes.axes.length !== 0) {
if (attributes.axes.length !== attributes.starts.length || attributes.axes.length !== attributes.ends.length) {
throw new Error('axes, starts and ends must have the same length');
}
} else if (attributes.starts.length !== attributes.ends.length) {
throw new Error('starts and ends must have the same length');
}
inputs.slice(1).forEach((_, idx) => {
if (inputs[idx + 1].dataType !== DataType.int32 && inputs[idx + 1].dataType !== DataType.int64) {
throw new Error(`Input ${idx} must be an array of int32 or int64`);
}
});
};
const readInput = (inputs: readonly TensorView[], idx: number): number[] => {
const input: number[] = [];
if (inputs.length > idx) {
if (inputs[idx].dataType === DataType.int64) {
inputs[idx].getBigInt64Array().forEach((v) => input.push(Number(v)));
} else if (inputs[idx].dataType === DataType.int32) {
inputs[idx].getInt32Array().forEach((v) => input.push(Number(v)));
} else {
throw new Error(`Input ${idx} must be an array of int32 or int64`);
}
}
return input;
};
const createSliceAttributesFromInputs = (
inputs: readonly TensorView[],
attributes: SliceAttributes,
): SliceAttributes => {
if (inputs.length > 1) {
const starts: number[] = readInput(inputs, 1);
const ends: number[] = readInput(inputs, 2);
let axes: number[] = readInput(inputs, 3);
if (axes.length === 0) {
axes = [...Array(inputs[0].dims.length).keys()];
}
return createAttributeWithCacheKey({ starts, ends, axes });
} else {
return attributes;
}
};
const fixStartEndValues = (
value: number,
index: number,
inputShape: readonly number[],
axes: readonly number[],
steps: readonly number[],
): number => {
let newValue = value;
if (value < 0) {
newValue += inputShape[axes[index]];
}
if (steps[index] < 0) {
return Math.max(0, Math.min(newValue, inputShape[axes[index]] - 1));
} else {
return Math.max(0, Math.min(newValue, inputShape[axes[index]]));
}
};
const calculateInputIndicesImpl = (
input: IndicesHelper,
output: IndicesHelper,
inputShape: readonly number[],
): string =>
`fn calculateInputIndices(output_indices: ${output.type.indices}) -> ${input.type.indices} {
var input_indices: ${input.type.indices};
var carry = 0u;
for (var i = ${inputShape.length}; i >= 0; i--) {
let input_shape_i = ${getElementAt('uniforms.input_shape', 'i', inputShape.length)};
let steps_i = ${getElementAt('uniforms.steps', 'i', inputShape.length)};
let signs_i = ${getElementAt('uniforms.signs', 'i', inputShape.length)};
let starts_i = ${getElementAt('uniforms.starts', 'i', inputShape.length)};
var output_index = ${output.indicesGet('output_indices', 'i')};
var input_index = output_index * steps_i + starts_i + carry;
carry = input_index / input_shape_i;
input_index = input_index % input_shape_i;
if (signs_i < 0) {
input_index = input_shape_i - input_index - 1u + starts_i;
}
${input.indicesSet('input_indices', 'i', 'input_index')};
}
return input_indices;
}`;
const createSliceProgramInfo = (inputs: readonly TensorView[], attributes: SliceAttributes): ProgramInfo => {
const inputShape = inputs[0].dims;
const inputSize = ShapeUtil.size(inputShape);
const axes =
attributes.axes.length > 0
? ShapeUtil.normalizeAxes(attributes.axes, inputShape.length)
: [...Array(inputShape.length).keys()];
let steps = readInput(inputs, 4);
steps.forEach(
(step) =>
step !== 0 ||
(() => {
throw new Error('step cannot be 0');
}),
);
if (steps.length === 0) {
steps = Array(axes.length).fill(1);
}
const starts = attributes.starts.map((start, i) => fixStartEndValues(start, i, inputShape, axes, steps));
const ends = attributes.ends.map((end, i) => fixStartEndValues(end, i, inputShape, axes, steps));
if (axes.length !== starts.length || axes.length !== ends.length) {
throw new Error('start, ends and axes should have the same number of elements');
}
if (axes.length !== inputShape.length) {
for (let i = 0; i < inputShape.length; ++i) {
if (!axes.includes(i)) {
starts.splice(i, 0, 0);
ends.splice(i, 0, inputShape[i]);
steps.splice(i, 0, 1);
}
}
}
const signs = steps.map((step) => Math.sign(step));
// Convert negative steps to positive steps and reverse starts and ends
steps.forEach((step, i, array) => {
if (step < 0) {
const numSteps = (ends[i] - starts[i]) / step;
const newEnd = starts[i];
const newStart = newEnd + numSteps * steps[i];
starts[i] = newStart;
ends[i] = newEnd;
array[i] = -step;
}
});
// Output rank is expected to be less than or equal to the input rank.
const outputShape = inputShape.slice(0);
axes.forEach((axis, _) => {
outputShape[axis] = Math.ceil((ends[axis] - starts[axis]) / steps[axis]);
});
const outputTensorInfo: TensorInfo = { dims: outputShape, dataType: inputs[0].dataType };
const output = outputVariable('output', inputs[0].dataType, outputShape.length);
const input = inputVariable('input', inputs[0].dataType, inputs[0].dims.length);
const outputSize = ShapeUtil.size(outputShape);
const uniforms: UniformsArrayType = [
{ name: 'outputSize', type: 'u32' },
{ name: 'starts', type: 'u32', length: starts.length },
{ name: 'signs', type: 'i32', length: signs.length },
{ name: 'steps', type: 'u32', length: steps.length },
];
const programUniforms: ProgramUniform[] = [
{ type: DataType.uint32, data: outputSize },
{ type: DataType.uint32, data: starts },
{ type: DataType.int32, data: signs },
{ type: DataType.uint32, data: steps },
...createTensorShapeVariables(inputs[0].dims, outputShape),
];
const getShaderSource = (shaderHelper: ShaderHelper) => `
${shaderHelper.registerUniforms(uniforms).declareVariables(input, output)}
${calculateInputIndicesImpl(input, output, inputShape)}
${shaderHelper.mainStart()}
${shaderHelper.guardAgainstOutOfBoundsWorkgroupSizes('uniforms.outputSize')}
let output_indices = ${output.offsetToIndices('global_idx')};
let input_indices = calculateInputIndices(output_indices);
${output.setByOffset('global_idx', input.getByIndices('input_indices'))}
}`;
return {
name: 'Slice',
shaderCache: { hint: `${signs.length}_${starts.length}_${steps.length}`, inputDependencies: ['rank'] },
getShaderSource,
getRunData: () => ({
outputs: [outputTensorInfo],
dispatchGroup: { x: Math.ceil(inputSize / 64 /* workgroup size */) },
programUniforms,
}),
};
};
export const slice = (context: ComputeContext, attributes: SliceAttributes): void => {
validateInputs(context.inputs, attributes);
const updatedAttributes = createSliceAttributesFromInputs(context.inputs, attributes);
context.compute(createSliceProgramInfo(context.inputs, updatedAttributes), { inputs: [0] });
// if (ShapeUtil.size(program.outputs[0].dims) > 0) {
// context.compute(programInfoLoader, {inputs: [0]});
// } else {
// // TODO: support empty output
// throw new Error('slice: output size is 0');
// }
};
export const parseSliceAttributes = (attributes: Record<string, unknown>): SliceAttributes => {
const starts = attributes.starts as number[];
const ends = attributes.ends as number[];
const axes = attributes.axes as number[];
return createAttributeWithCacheKey({ starts, ends, axes });
};