onnxruntime-web
Version:
A Javascript library for running ONNX models on browsers
243 lines (221 loc) • 9.02 kB
text/typescript
// Copyright (c) Microsoft Corporation. All rights reserved.
// Licensed under the MIT License.
import { DataType } from '../../../wasm-common';
import { TensorView } from '../../tensor-view';
import { ShapeUtil } from '../../util';
import { ComputeContext, ProgramInfo, ProgramUniform } from '../types';
import {
castToF32,
getMaxComponents,
inputVariable,
outputVariable,
ShaderHelper,
sumVector,
tensorTypeToWsglStorageType,
UniformsArrayType,
} from './common';
export interface SkipLayerNormAttributes {
simplified: boolean;
epsilon: number;
}
const validateInputs = (inputs: readonly TensorView[]): void => {
if (!inputs || inputs.length < 3) {
throw new Error('layerNorm requires at least 3 inputs.');
}
const input: TensorView = inputs[0];
const skip: TensorView = inputs[1];
const gamma: TensorView = inputs[2];
if (input.dataType !== skip.dataType || input.dataType !== gamma.dataType) {
throw new Error('All inputs must have the same data type');
}
if (input.dims.length !== 3 && input.dims.length !== 2) {
throw new Error('Input must be 2D or 3D');
}
if (skip.dims.length !== 3 && skip.dims.length !== 2) {
throw new Error('Skip must be 2D or 3D');
}
const hiddenSize = input.dims[input.dims.length - 1];
const sequenceLength = input.dims[input.dims.length - 2];
if (skip.dims[skip.dims.length - 1] !== hiddenSize) {
throw new Error('Skip must have the same hidden size as input');
}
if (skip.dims[skip.dims.length - 2] !== sequenceLength) {
throw new Error('Skip must have the same sequence length as input');
}
if (gamma.dims.length !== 1) {
throw new Error('Gamma must be 1D');
}
if (gamma.dims[gamma.dims.length - 1] !== hiddenSize) {
throw new Error('Gamma must have the same hidden size as input');
}
if (inputs.length > 3) {
const beta: TensorView = inputs[3];
if (beta.dims.length !== 1) {
throw new Error('Beta must be 1D');
}
if (beta.dims[beta.dims.length - 1] !== hiddenSize) {
throw new Error('Beta must have the same hidden size as input');
}
}
if (inputs.length > 4) {
const bias: TensorView = inputs[4];
if (bias.dims.length !== 1) {
throw new Error('Bias must be 1D');
}
if (bias.dims[bias.dims.length - 1] !== hiddenSize) {
throw new Error('Bias must have the same hidden size as input');
}
}
};
const createSkipLayerNormProgramInfo = (
inputs: readonly TensorView[],
attributes: SkipLayerNormAttributes,
outputCount: number,
isTraining: boolean,
): ProgramInfo => {
const simplified = attributes.simplified;
const inputShape = inputs[0].dims;
const inputSize = ShapeUtil.size(inputShape);
const outputShape = inputShape;
const outputSize = inputSize;
const hiddenSize = inputShape.slice(-1)[0];
const meanInvStdDevDim = isTraining ? inputShape.slice(0, -1).concat(1) : [];
const hasBetaInput = !simplified && inputs.length > 3;
const hasBiasInput = inputs.length > 4;
const hasMeanOutput = isTraining && outputCount > 1;
const hasInvStdDevOutput = isTraining && outputCount > 2;
const hasInputSkipBiasSumOutput = outputCount > 3;
const workgroupSize = 64;
const components = getMaxComponents(hiddenSize);
const programUniforms: ProgramUniform[] = [
{ type: DataType.uint32, data: outputSize },
{ type: DataType.uint32, data: components },
{ type: DataType.uint32, data: hiddenSize },
{ type: DataType.float, data: attributes.epsilon },
];
const getShaderSource = (shaderHelper: ShaderHelper) => {
const uniformsArray: UniformsArrayType = [
{ name: 'output_size', type: 'u32' },
{ name: 'components', type: 'u32' },
{ name: 'hidden_size', type: 'u32' },
{ name: 'epsilon', type: 'f32' },
];
const variables = [
inputVariable('x', inputs[0].dataType, inputs[0].dims, components),
inputVariable('skip', inputs[1].dataType, inputs[1].dims, components),
inputVariable('gamma', inputs[2].dataType, inputs[2].dims, components),
];
if (hasBetaInput) {
variables.push(inputVariable('beta', inputs[3].dataType, inputs[3].dims, components));
}
if (hasBiasInput) {
variables.push(inputVariable('bias', inputs[4].dataType, inputs[4].dims, components));
}
variables.push(outputVariable('output', inputs[0].dataType, outputShape, components));
if (hasMeanOutput) {
variables.push(outputVariable('mean_output', DataType.float, meanInvStdDevDim));
}
if (hasInvStdDevOutput) {
variables.push(outputVariable('inv_std_output', DataType.float, meanInvStdDevDim));
}
if (hasInputSkipBiasSumOutput) {
variables.push(outputVariable('input_skip_bias_sum', inputs[0].dataType, outputShape, components));
}
const dataType = tensorTypeToWsglStorageType(inputs[0].dataType);
const vecDataType = tensorTypeToWsglStorageType(DataType.float, components);
return `
${shaderHelper.registerUniforms(uniformsArray).declareVariables(...variables)}
var<workgroup> sum_shared : array<${vecDataType}, ${workgroupSize}>;
var<workgroup> sum_squared_shared : array<${vecDataType}, ${workgroupSize}>;
${shaderHelper.mainStart([workgroupSize, 1, 1])}
let ix = local_id.x;
let iy = global_id.x / ${workgroupSize};
let hidden_size_vectorized: u32 = uniforms.hidden_size / uniforms.components;
var stride = hidden_size_vectorized / ${workgroupSize};
let offset = ix * stride + iy * hidden_size_vectorized;
let offset1d = stride * ix;
if (ix == ${workgroupSize - 1}) {
stride = hidden_size_vectorized - stride * ix;
}
for (var i: u32 = 0; i < stride; i++) {
let skip_value = skip[offset + i];
let bias_value = ${hasBiasInput ? 'bias[offset1d + i]' : dataType + '(0.0)'};
let input_value = x[offset + i];
let value = input_value + skip_value + bias_value;
${hasInputSkipBiasSumOutput ? 'input_skip_bias_sum[offset + i] = value;' : ''}
output[offset + i] = value;
let f32_value = ${castToF32(dataType, components, 'value')};
sum_shared[ix] += f32_value;
sum_squared_shared[ix] += f32_value * f32_value;
}
workgroupBarrier();
var reduce_size : u32 = ${workgroupSize};
for (var curr_size = reduce_size >> 1; curr_size > 0; curr_size = reduce_size >> 1) {
reduce_size = curr_size + (reduce_size & 1);
if (ix < curr_size) {
sum_shared[ix] += sum_shared[ix + reduce_size];
sum_squared_shared[ix] += sum_squared_shared[ix + reduce_size];
}
workgroupBarrier();
}
let sum = sum_shared[0];
let square_sum = sum_squared_shared[0];
let mean = ${sumVector('sum', components)} / f32(uniforms.hidden_size);
let inv_std_dev = inverseSqrt(${sumVector('square_sum', components)} / f32(uniforms.hidden_size) ${
simplified ? '' : '- mean * mean'
} + uniforms.epsilon);
${hasMeanOutput ? 'mean_output[global_idx] = mean;' : ''}
${hasInvStdDevOutput ? 'inv_std_output[global_idx] = inv_std_dev;' : ''}
for (var i: u32 = 0; i < stride; i++) {
output[offset + i] = (output[offset + i] ${simplified ? '' : `- ${dataType}(mean)`}) *
${dataType}(inv_std_dev) * gamma[offset1d + i]
${hasBetaInput ? '+ beta[offset1d + i]' : ''};
}
}`;
};
const outputs = [{ dims: outputShape, dataType: inputs[0].dataType }];
if (outputCount > 1) {
outputs.push({ dims: meanInvStdDevDim, dataType: DataType.float });
}
if (outputCount > 2) {
outputs.push({ dims: meanInvStdDevDim, dataType: DataType.float });
}
if (outputCount > 3) {
outputs.push({ dims: inputShape, dataType: inputs[0].dataType });
}
return {
name: 'SkipLayerNormalization',
shaderCache: {
hint: `${components};${hasMeanOutput};${hasInvStdDevOutput};${hasInputSkipBiasSumOutput}`,
inputDependencies: inputs.map((_input, _index) => 'type'),
},
getShaderSource,
getRunData: () => ({
outputs,
dispatchGroup: {
x: Math.ceil(outputSize / hiddenSize),
},
programUniforms,
}),
};
};
export const skipLayerNorm = (context: ComputeContext, attributes: SkipLayerNormAttributes): void => {
// TODO: initialize isTraining from ComputeContext
const isTraining = false;
validateInputs(context.inputs);
// Mean and InvStdDev are only used in training mode and are not required for inference.
// They are added here for completeness only.
const outputs = [0];
if (context.outputCount > 1) {
outputs.push(isTraining ? 1 : -3);
}
if (context.outputCount > 2) {
outputs.push(isTraining ? 2 : -3);
}
if (context.outputCount > 3) {
outputs.push(3);
}
context.compute(createSkipLayerNormProgramInfo(context.inputs, attributes, context.outputCount, isTraining), {
outputs,
});
};