onnxruntime-web
Version:
A Javascript library for running ONNX models on browsers
291 lines (253 loc) • 9.61 kB
text/typescript
// Copyright (c) Microsoft Corporation. All rights reserved.
// Licensed under the MIT License.
import { DataType } from '../../../wasm-common';
import { TensorView } from '../../tensor-view';
import { ShapeUtil } from '../../util';
import { ComputeContext, ProgramInfo } from '../types';
import { inputVariable, outputVariable, ShaderHelper } from './common';
import { createReduceAttributesFromInputs, ReduceAttributes } from './reduce';
import { createTransposeProgramInfo } from './transpose';
const reduceOps: { [key: string]: string } = {
max: 'select(bestValue, candidate, candidate > bestValue)',
min: 'select(bestValue, candidate, candidate < bestValue)',
mean: 'bestValue + candidate',
sum: 'bestValue + candidate',
prod: 'bestValue * candidate',
sumSquare: 'bestValue + candidate * candidate',
logSumExp: 'bestValue + exp(candidate)',
l1: 'bestValue + abs(candidate)',
l2: 'bestValue + candidate * candidate',
logSum: 'bestValue + candidate',
};
const reduceSharedOps: { [key: string]: string } = {
max: 'select(bestValue, candidate, candidate > bestValue)',
min: 'select(bestValue, candidate, candidate < bestValue)',
mean: 'bestValue + candidate',
sum: 'bestValue + candidate',
prod: 'bestValue * candidate',
sumSquare: 'bestValue + candidate',
logSumExp: 'bestValue + candidate',
l1: 'bestValue + candidate',
l2: 'bestValue + candidate',
logSum: 'bestValue + candidate',
};
const reduceInitValues: { [key: string]: string } = {
max: '_A[offset]',
min: '_A[offset]',
mean: '0',
sum: '0',
prod: '1',
sumSquare: '0',
logSumExp: '0',
l1: '0',
l2: '0',
logSum: '0',
};
const reduceOutputValues: { [key: string]: string } = {
max: 'bestValue',
min: 'bestValue',
sum: 'bestValue',
prod: 'bestValue',
sumSquare: 'bestValue',
logSumExp: 'log(bestValue)',
l1: 'bestValue',
l2: 'sqrt(bestValue)',
logSum: 'log(bestValue)',
};
const getInnerMostAxes = (numInnerAxes: number, rank: number): number[] => {
const res = [];
for (let i = rank - numInnerAxes; i < rank; ++i) {
res.push(i);
}
return res;
};
const computeOutAndReduceShapes = (shape: readonly number[], axes: readonly number[]): [number[], number[]] => {
const outputShape = [];
const rank = shape.length;
for (let dim = 0; dim < rank; dim++) {
if (axes.indexOf(dim) === -1) {
outputShape.push(shape[dim]);
}
}
const reduceShape = axes.map((dim) => shape[dim]);
return [outputShape, reduceShape];
};
const expandShapeToKeepDim = (shape: number[], axes: number[]): number[] => {
const rank = shape.length + axes.length;
const expandShape = [];
let shapeIdx = 0;
for (let dim = 0; dim < rank; dim++) {
if (axes.indexOf(dim) === -1) {
expandShape.push(shape[shapeIdx++]);
} else {
expandShape.push(1);
}
}
return expandShape;
};
const areAxesInnerMostDims = (axes: number[], rank: number): boolean => {
for (let i = 0; i < axes.length; ++i) {
if (axes[axes.length - i - 1] !== rank - 1 - i) {
return false;
}
}
return true;
};
const getAxesPermutation = (axes: number[], rank: number): number[] => {
const res = [];
if (!areAxesInnerMostDims(axes, rank)) {
for (let i = 0; i < rank; ++i) {
if (axes.indexOf(i) === -1) {
res.push(i);
}
}
axes.forEach((axis) => res.push(axis));
}
return res;
};
export const createReduceSharedProgramInfo = (
name: string,
cacheKey: string,
inputs: readonly TensorView[],
reduceType: string,
outputDataType: DataType,
outputShape: number[],
reduceShape: number[],
): ProgramInfo => {
const inputShape = inputs[0].dims;
const outputSize = ShapeUtil.size(outputShape);
const reduceSize = ShapeUtil.size(reduceShape);
const input = inputVariable('_A', inputs[0].dataType, inputShape);
const output = outputVariable('output', outputDataType, outputShape);
let workgroupSize = 64;
// If only one workgroup is dispatched, increase workgroupSize to improve parallelism.
if (outputSize === 1) {
workgroupSize = 256;
}
const sharedMemorySnippet = `
var<workgroup> aBestValues : array<f32, ${workgroupSize}>;
`;
const getShaderSource = (shaderHelper: ShaderHelper) => `
${shaderHelper.registerUniform('reduceSize', 'u32').declareVariables(input, output)}
${sharedMemorySnippet}
fn DIV_CEIL(a : u32, b : u32) -> u32 {
return ((a - 1u) / b + 1u);
}
${shaderHelper.mainStart(workgroupSize)}
let outputIndex = global_idx / ${workgroupSize};
let offset = outputIndex * uniforms.reduceSize;
var bestValue = f32(${reduceInitValues[reduceType]});
let Length = uniforms.reduceSize;
for (var k = local_idx; k < Length; k = k + ${workgroupSize}) {
let candidate = f32(${input.getByOffset('offset + k')});
bestValue = ${reduceOps[reduceType]};
}
aBestValues[local_idx] = bestValue;
workgroupBarrier();
var reduceSize = min(Length, ${workgroupSize}u);
for (var currentSize = reduceSize / 2u; reduceSize > 1u;
currentSize = reduceSize / 2u) {
let interval = DIV_CEIL(reduceSize, 2u);
if (local_idx < currentSize) {
let candidate = aBestValues[local_idx + interval];
bestValue = ${reduceSharedOps[reduceType]};
aBestValues[local_idx] = bestValue;
}
reduceSize = interval;
workgroupBarrier();
}
if (local_idx == 0u) {
${output.setByOffset(
'outputIndex',
`${
reduceType === 'mean'
? `${output.type.storage}(bestValue / f32(uniforms.reduceSize))`
: `${output.type.storage}(${reduceOutputValues[reduceType]})`
}`,
)};
}
}`;
// One work group is responsible for only one element of output.
return {
name,
// Note that in JSEP, WG size is not included in cache by default, but WebGPU EP it is.
shaderCache: { hint: `${cacheKey};${workgroupSize}`, inputDependencies: ['type'] },
getShaderSource,
getRunData: () => ({
outputs: [{ dims: outputShape, dataType: outputDataType }],
dispatchGroup: { x: outputSize },
programUniforms: [{ type: DataType.uint32, data: reduceSize }],
}),
};
};
const reduceCommon = (
context: ComputeContext,
name: string,
attributes: ReduceAttributes,
reduceType: 'sum' | 'sumSquare' | 'prod' | 'min' | 'max' | 'mean' | 'logSumExp' | 'l1' | 'l2' | 'logSum',
): void => {
const updatedAttributes: ReduceAttributes =
context.inputs.length === 1 ? attributes : createReduceAttributesFromInputs(context.inputs, attributes);
let updatedAxes = updatedAttributes.axes;
if (updatedAxes.length === 0 && !updatedAttributes.noopWithEmptyAxes) {
updatedAxes = context.inputs[0].dims.map((_dim, i) => i);
}
const normalizeAxes = ShapeUtil.normalizeAxes(updatedAxes, context.inputs[0].dims.length);
let axes = normalizeAxes;
let input = context.inputs[0];
const permutedAxes = getAxesPermutation(axes, context.inputs[0].dims.length);
if (permutedAxes.length > 0) {
input = context.compute(createTransposeProgramInfo(context.inputs[0], permutedAxes), {
inputs: [0],
outputs: [-1],
})[0];
axes = getInnerMostAxes(axes.length, input.dims.length);
}
const [outputShape, reduceShape] = computeOutAndReduceShapes(input.dims, axes);
let finalOutputShape = outputShape;
if (updatedAttributes.keepDims) {
finalOutputShape = expandShapeToKeepDim(outputShape, normalizeAxes);
}
context.compute(
createReduceSharedProgramInfo(
name,
updatedAttributes.cacheKey,
[input],
reduceType,
context.inputs[0].dataType,
finalOutputShape,
reduceShape,
),
{ inputs: [input] },
);
};
export const reduceMeanShared = (context: ComputeContext, attributes: ReduceAttributes): void => {
reduceCommon(context, 'ReduceMeanShared', attributes, 'mean');
};
export const reduceL1Shared = (context: ComputeContext, attributes: ReduceAttributes): void => {
reduceCommon(context, 'ReduceL1Shared', attributes, 'l1');
};
export const reduceL2Shared = (context: ComputeContext, attributes: ReduceAttributes): void => {
reduceCommon(context, 'ReduceL2Shared', attributes, 'l2');
};
export const reduceLogSumExpShared = (context: ComputeContext, attributes: ReduceAttributes): void => {
reduceCommon(context, 'ReduceLogSumExpShared', attributes, 'logSumExp');
};
export const reduceMaxShared = (context: ComputeContext, attributes: ReduceAttributes): void => {
reduceCommon(context, 'ReduceMaxShared', attributes, 'max');
};
export const reduceMinShared = (context: ComputeContext, attributes: ReduceAttributes): void => {
reduceCommon(context, 'ReduceMinShared', attributes, 'min');
};
export const reduceProdShared = (context: ComputeContext, attributes: ReduceAttributes): void => {
reduceCommon(context, 'ReduceProdShared', attributes, 'prod');
};
export const reduceSumShared = (context: ComputeContext, attributes: ReduceAttributes): void => {
reduceCommon(context, 'ReduceSumShared', attributes, 'sum');
};
export const reduceSumSquareShared = (context: ComputeContext, attributes: ReduceAttributes): void => {
reduceCommon(context, 'ReduceSumSquareShared', attributes, 'sumSquare');
};
export const reduceLogSumShared = (context: ComputeContext, attributes: ReduceAttributes): void => {
reduceCommon(context, 'ReduceLogSumShared', attributes, 'logSum');
};