onnxruntime-web
Version:
A Javascript library for running ONNX models on browsers
85 lines (74 loc) • 3.05 kB
text/typescript
// Copyright (c) Microsoft Corporation. All rights reserved.
// Licensed under the MIT License.
import { env } from 'onnxruntime-common';
import { DataType } from '../../../wasm-common';
import { ComputeContext, ProgramInfo, ProgramUniform } from '../types';
import {
createTensorShapeVariables,
outputVariable,
ShaderHelper,
UniformDataElementType,
UniformsArrayType,
} from './common';
const validateInputsContent = (start: number, limit: number, delta: number): void => {
const sameStartLimit = start === limit;
const increasingRangeNegativeStep = start < limit && delta < 0;
const decreasingRangePositiveStep = start > limit && delta > 0;
if (sameStartLimit || increasingRangeNegativeStep || decreasingRangePositiveStep) {
throw new Error("Range these inputs' contents are invalid.");
}
};
const createRangeProgramInfo = (start: number, limit: number, delta: number, dataType: DataType): ProgramInfo => {
const numElements = Math.abs(Math.ceil((limit - start) / delta));
const outputShape: number[] = [numElements];
const outputSize = numElements;
const programUniforms: ProgramUniform[] = [
{ type: DataType.uint32, data: outputSize },
{ type: dataType, data: start },
{ type: dataType, data: delta },
...createTensorShapeVariables(outputShape),
];
const getShaderSource = (shaderHelper: ShaderHelper) => {
const output = outputVariable('output', dataType, outputShape.length);
const wgslType = output.type.value;
const uniforms: UniformsArrayType = [
{ name: 'outputSize', type: 'u32' },
{ name: 'start', type: wgslType as UniformDataElementType },
{ name: 'delta', type: wgslType as UniformDataElementType },
];
return `
${shaderHelper.registerUniforms(uniforms).declareVariables(output)}
${shaderHelper.mainStart()}
${shaderHelper.guardAgainstOutOfBoundsWorkgroupSizes('uniforms.outputSize')}
output[global_idx] = uniforms.start + ${wgslType}(global_idx) * uniforms.delta;
}`;
};
return {
name: 'Range',
shaderCache: { hint: `${dataType}` },
getShaderSource,
getRunData: () => ({
outputs: [{ dims: outputShape, dataType }],
dispatchGroup: { x: Math.ceil(outputSize / 64 /* workgroup size */) },
programUniforms,
}),
};
};
export const range = (context: ComputeContext): void => {
let start = 0;
let limit = 0;
let delta = 0;
if (context.inputs[0].dataType === DataType.int32) {
start = context.inputs[0].getInt32Array()[0];
limit = context.inputs[1].getInt32Array()[0];
delta = context.inputs[2].getInt32Array()[0];
} else if (context.inputs[0].dataType === DataType.float) {
start = context.inputs[0].getFloat32Array()[0];
limit = context.inputs[1].getFloat32Array()[0];
delta = context.inputs[2].getFloat32Array()[0];
}
if (env.webgpu.validateInputContent) {
validateInputsContent(start, limit, delta);
}
context.compute(createRangeProgramInfo(start, limit, delta, context.inputs[0].dataType), { inputs: [] });
};