onnxruntime-web
Version:
A Javascript library for running ONNX models on browsers
435 lines (394 loc) • 15.9 kB
text/typescript
// Copyright (c) Microsoft Corporation. All rights reserved.
// Licensed under the MIT License.
import { DataType } from '../../../wasm-common';
import { TensorView } from '../../tensor-view';
import { ShapeUtil } from '../../util';
import { createAttributeWithCacheKey } from '../attribute-with-cache-key';
import { ComputeContext, GpuDataType, ProgramUniform } from '../types';
import {
applyAttention,
AttentionAttrs,
AttentionMaskType,
AttentionParameters,
AttentionQkvFormat,
} from './attention';
import { inputVariable, outputVariable, ShaderHelper, UniformsArrayType } from './common';
import { createTransposeProgramInfo, TransposeAttributes } from './transpose';
const getInput = (inputs: readonly TensorView[], i: number) =>
inputs.length > i && inputs[i].dims.length > 0 ? inputs[i] : undefined;
const validateInputs = (inputs: readonly TensorView[], attributes: AttentionAttrs): AttentionParameters => {
const query = inputs[0];
const key = getInput(inputs, 1);
const value = getInput(inputs, 2);
const bias = getInput(inputs, 3);
const keyPaddingMask = getInput(inputs, 4);
const attentionBias = getInput(inputs, 5);
const pastKey = getInput(inputs, 6);
const pastValue = getInput(inputs, 7);
// ---------------------------------------------------------------
// Notations:
// B: batch_size
// N: num_heads
// H: head_size of Q and K
// H_v: head_size of V
// D: hidden_size for Q and K, where D = N * H
// D_v: hidden_size of V, where D_v = N * H_v
// S: q_sequence_length
// P: past_sequence_length of kv cache
// L: kv_sequence_length
// T: total_sequence_length = P + L
// M: max_sequence_length of kv cache when past and present share buffer
// ---------------------------------------------------------------
// MultiHeadAttention inputs:
// ---------------------------------------------------------------
// Q_K_V_BSNH - no packing:
// query (Q) : (B, S, D)
// key (K) : (B, L, D)
// value (V) : (B, L, D_v)
// Q_K_V_BSNH_BNSH_BNSH - cross attention (kv cache is not used, L == T, D == D_v):
// query (Q) : (B, S, D)
// key (K) : (B, N, L, H)
// value (V) : (B, N, L, H_v)
// Q_KV_BSNH_BSN2H - packed kv (kv cache is not used, bias is not allowed for packed kv):
// query (Q) : (B, S, D)
// key (K/V) : (B, L, N, 2, H)
// value : None
// QKV_BSN3H - packed qkv (kv cache is not used, S == L, D == D_v):
// query (Q/K/V) : (B, S, N, 3, H)
// key : None
// value : None
//
// Other inputs:
// bias (Q/K/V) : None or (D + D + D_v)
// key_padding_mask (K/V) : (B) or (3 * B + 2) or (B, T) or (B, S, T)
// attention_bias : None or (B, N, S, T), (1, N, S, T), (B, 1, S, T) or (1, 1, S, T)
// past_key : (B, N, P, H) or None. Past state is only allowed for Q_K_V_BSNH.
// past_value : (B, N, P, H) or None. Past state is only allowed for Q_K_V_BSNH.
//
// Not Supported:
// key_padding_mask, packed kv, packed qkv, and broadcast for attention_bias.
if (query.dims.length !== 3 && query.dims.length !== 5) {
throw new Error('Input query is expected to have 3 or 5 dimensions');
}
const batchSize = query.dims[0];
const sequenceLength = query.dims[1];
const hiddenSize = query.dims.length === 3 ? query.dims[2] : attributes.numHeads * query.dims[4];
let kvSequenceLength = sequenceLength;
let pastSequenceLength = 0;
let maxSequenceLength = 0;
const headSize = Math.floor(hiddenSize / attributes.numHeads);
if (pastKey && pastValue && ShapeUtil.size(pastKey.dims) && ShapeUtil.size(pastValue.dims)) {
if (pastKey.dims.length !== 4) {
throw new Error('Input "past_key" is expected to have 4 dimensions');
}
if (pastKey.dims[0] !== batchSize || pastKey.dims[1] !== attributes.numHeads || pastKey.dims[3] !== headSize) {
throw new Error('Input "past_key" shape (batch_size, num_heads, past_sequence_length, head_size)');
}
if (
pastValue.dims[0] !== batchSize ||
pastValue.dims[1] !== attributes.numHeads ||
pastValue.dims[3] !== headSize
) {
throw new Error('Input "past_value" shape (batch_size, num_heads, past_sequence_length, head_size)');
}
if (pastKey.dims[2] !== pastValue.dims[2]) {
throw new Error('Input "past_key" and "past_value" shall have same dim 2 (past_sequence_length)');
}
if (pastValue.dims.length !== 4) {
throw new Error('Input "past_value" is expected to have 4 dimensions');
}
pastSequenceLength = pastKey.dims[2];
maxSequenceLength = pastKey.dims[2];
} else if ((pastKey && ShapeUtil.size(pastKey.dims)) || (pastValue && ShapeUtil.size(pastValue.dims))) {
throw new Error('Input "past_key" and "past_value" shall be both present or both absent');
}
let qkvFormat: AttentionQkvFormat;
if (key && ShapeUtil.size(key.dims) > 0) {
if (query.dims.length !== 3) {
throw new Error('Input "query" is expected to have 3 dimensions when key is given');
}
if (key.dims.length < 3 || key.dims.length > 5) {
throw new Error('Input "key" is expected to have 3, 4, or 5 dimensions');
}
if (query.dims[0] !== key.dims[0]) {
throw new Error('Input "query" and "key" shall have same dim 0 (batch size)');
}
if (key.dims.length === 3) {
if (key.dims[2] !== query.dims[2]) {
throw new Error('Input "query" and "key" shall have same dim 2 (hidden_size)');
}
qkvFormat = AttentionQkvFormat.qkvBSNH;
kvSequenceLength = key.dims[1];
} else if (key.dims.length === 5) {
if (key.dims[2] !== attributes.numHeads || key.dims[3] !== 2 || key.dims[4] !== headSize) {
throw new Error('Expect "key" shape (batch_size, kv_sequence_length, num_heads, 2, head_size) for packed kv');
}
if (value) {
throw new Error('Expect "value" be none when "key" has packed kv format.');
}
qkvFormat = AttentionQkvFormat.qKvBSNHxBSN2H;
kvSequenceLength = key.dims[1];
} else {
// key_dims.size() == 4 (cross-attention with past_key)
if (key.dims[1] !== attributes.numHeads || key.dims[3] !== headSize) {
throw new Error('Expect "key" shape (batch_size, num_heads, kv_sequence_length, head_size) for past_key');
}
qkvFormat = AttentionQkvFormat.unknown; // Q_K_V_BSNH_BNSH_BNSH
kvSequenceLength = key.dims[2];
}
} else {
// packed QKV
if (query.dims.length !== 5) {
throw new Error('Input "query" is expected to have 5 dimensions when key is empty');
}
if (query.dims[2] !== attributes.numHeads || query.dims[3] !== 3) {
throw new Error('Expect "query" shape (batch_size, kv_sequence_length, num_heads, 3, head_size) for packed kv');
}
qkvFormat = AttentionQkvFormat.qkvBSN3H;
}
if (bias && ShapeUtil.size(bias.dims) > 0) {
if (bias.dims.length !== 1) {
throw new Error('Input "bias" is expected to have 1 dimension');
}
if (key) {
if (key.dims.length === 5 && key.dims[3] === 2) {
throw new Error('bias is not allowed for packed kv.');
}
}
}
const totalSequenceLength = pastSequenceLength + kvSequenceLength;
let maskType: AttentionMaskType = AttentionMaskType.none;
if (keyPaddingMask && ShapeUtil.size(keyPaddingMask.dims) > 0) {
maskType = AttentionMaskType.maskUnknown;
const maskDims = keyPaddingMask.dims;
if (maskDims.length === 1) {
if (maskDims[0] === batchSize) {
maskType = AttentionMaskType.mask1dKeySeqLen;
} else if (maskDims[0] === 3 * batchSize + 2) {
maskType = AttentionMaskType.mask1DKeySeqLenStart;
}
} else if (maskDims.length === 2 && maskDims[0] === batchSize && maskDims[1] === totalSequenceLength) {
maskType = AttentionMaskType.mask2dKeyPadding;
}
if (maskType === AttentionMaskType.maskUnknown) {
throw new Error('Input "key_padding_mask" shape shall be (batch_size) or (batch_size, total_sequence_length)');
}
throw new Error('Mask not supported');
}
let passPastInKv = false;
let vHiddenSize = hiddenSize;
if (value && ShapeUtil.size(value.dims) > 0) {
if (value.dims.length !== 3 && value.dims.length !== 4) {
throw new Error('Input "value" is expected to have 3 or 4 dimensions');
}
if (query.dims[0] !== value.dims[0]) {
throw new Error('Input "query" and "value" shall have same dim 0 (batch_size)');
}
if (value.dims.length === 3) {
if (kvSequenceLength !== value.dims[1]) {
throw new Error('Input "key" and "value" shall have the same dim 1 (kv_sequence_length)');
}
vHiddenSize = value.dims[2];
} else {
// Q_K_V_BSNH_BNSH_BNSH
if (kvSequenceLength !== value.dims[2]) {
throw new Error('Input "key" and "value" shall have the same dim 2 (kv_sequence_length)');
}
vHiddenSize = value.dims[1] * value.dims[3];
passPastInKv = true;
}
}
const broadcastResPosBias = false;
if (keyPaddingMask && ShapeUtil.size(keyPaddingMask.dims) > 0) {
throw new Error('Key padding mask is not supported');
}
if (attentionBias && ShapeUtil.size(attentionBias.dims) > 0) {
if (attentionBias.dims.length !== 4) {
throw new Error('Input "attention_bias" is expected to have 4 dimensions');
}
// TODO: support broadcasting the first and second dimensions of attention_bias.
if (
attentionBias.dims[0] !== batchSize ||
attentionBias.dims[1] !== attributes.numHeads ||
attentionBias.dims[2] !== sequenceLength ||
attentionBias.dims[3] !== totalSequenceLength
) {
throw new Error('Expect "attention_bias" shape (batch_size, num_heads, sequence_length, total_sequence_length)');
}
}
return {
batchSize,
sequenceLength,
pastSequenceLength,
kvSequenceLength,
totalSequenceLength,
maxSequenceLength,
inputHiddenSize: 0,
hiddenSize,
vHiddenSize,
headSize,
vHeadSize: Math.floor(vHiddenSize / attributes.numHeads),
numHeads: attributes.numHeads,
isUnidirectional: false,
pastPresentShareBuffer: false,
maskFilterValue: attributes.maskFilterValue,
maskType,
scale: attributes.scale,
broadcastResPosBias,
passPastInKv,
qkvFormat,
};
};
export const parseMultiHeadAttentionAttributes = (attributes: AttentionAttrs): AttentionAttrs =>
createAttributeWithCacheKey({ ...attributes });
const weightTransposeAttribute: TransposeAttributes = createAttributeWithCacheKey({ perm: [0, 2, 1, 3] });
const addBiasTranspose = (
context: ComputeContext,
qkv: TensorView,
bias: TensorView,
batchSize: number,
sequenceLength: number,
hiddenSize: number,
biasOffset: number,
) => {
const outputShape = [batchSize, sequenceLength, hiddenSize];
const outputSize = ShapeUtil.size(outputShape);
const programUniforms: ProgramUniform[] = [
{ type: DataType.uint32, data: outputSize },
{ type: DataType.uint32, data: biasOffset },
{ type: DataType.uint32, data: hiddenSize },
];
const getShaderSource = (shaderHelper: ShaderHelper) => {
const output = outputVariable('qkv_with_bias', qkv.dataType, outputShape);
const qkvInput = inputVariable('qkv', qkv.dataType, outputShape);
const biasInput = inputVariable('bias', bias.dataType, outputShape);
const uniforms: UniformsArrayType = [
{ name: 'output_size', type: 'u32' },
{ name: 'bias_offset', type: 'u32' },
{ name: 'hidden_size', type: 'u32' },
];
return `
${shaderHelper.registerUniforms(uniforms).declareVariables(qkvInput, biasInput, output)}
${shaderHelper.mainStart()}
${shaderHelper.guardAgainstOutOfBoundsWorkgroupSizes('uniforms.output_size')}
let bias_offset_idx = (global_idx % uniforms.hidden_size) + uniforms.bias_offset;
qkv_with_bias[global_idx] = qkv[global_idx] + bias[bias_offset_idx];
}`;
};
return context.compute(
{
name: 'MultiHeadAttentionAddBias',
shaderCache: { inputDependencies: ['type', 'type'] },
getRunData: () => ({
outputs: [{ dims: outputShape, dataType: qkv.dataType, gpuDataType: GpuDataType.default }],
dispatchGroup: { x: Math.ceil(outputSize / 64 /* workgroup size */) },
programUniforms,
}),
getShaderSource,
},
{ inputs: [qkv, bias], outputs: [-1] },
)[0];
};
export const maybeTransposeToBNSHAndAddBias = (
context: ComputeContext,
batchSize: number,
numHeads: number,
sequenceLength: number,
headSize: number,
input: TensorView,
bias?: TensorView,
biasOffset?: number,
) => {
// const newDims = [];
let reshapedInput = input;
if (!(bias && ShapeUtil.size(bias.dims) > 0)) {
if (input.dims.length === 3) {
reshapedInput = input.reshape([batchSize, sequenceLength, numHeads, headSize]);
}
if (numHeads === 1 || sequenceLength === 1) {
return reshapedInput;
}
return context.compute(createTransposeProgramInfo(reshapedInput, weightTransposeAttribute.perm), {
inputs: [reshapedInput],
outputs: [-1],
})[0];
} else {
if (sequenceLength === 1) {
throw new Error('AddBiasReshape is not implemented. Please export your model with packed QKV or KV');
} else {
reshapedInput = addBiasTranspose(
context,
input,
bias,
batchSize,
sequenceLength,
numHeads * headSize,
biasOffset!,
);
reshapedInput = reshapedInput.reshape([batchSize, sequenceLength, numHeads, headSize]);
if (numHeads === 1 || sequenceLength === 1) {
return reshapedInput;
}
return context.compute(createTransposeProgramInfo(reshapedInput, weightTransposeAttribute.perm), {
inputs: [reshapedInput],
outputs: [-1],
})[0];
}
}
};
export const multiHeadAttention = (context: ComputeContext, attributes: AttentionAttrs): void => {
const params = validateInputs(context.inputs, attributes);
const query = context.inputs[0];
const key = getInput(context.inputs, 1);
const value = getInput(context.inputs, 2);
const bias = getInput(context.inputs, 3);
const keyPaddingMask = getInput(context.inputs, 4);
const attentionBias = getInput(context.inputs, 5);
const pastKey = getInput(context.inputs, 6);
const pastValue = getInput(context.inputs, 7);
if (query.dims.length === 5) {
throw new Error('Packed QKV is not implemented');
}
if (key?.dims.length === 5) {
throw new Error('Packed KV is not implemented');
}
// applyAttention expects BNSH inputs
const kvBNSH = key && value && key.dims.length === 4 && value.dims.length === 4;
const Q = maybeTransposeToBNSHAndAddBias(
context,
params.batchSize,
params.numHeads,
params.sequenceLength,
params.headSize,
query,
bias,
0,
);
if (kvBNSH) {
return applyAttention(context, Q, key, value, keyPaddingMask, undefined, pastKey, pastValue, attentionBias, params);
}
if (!key || !value) {
throw new Error('key and value must be provided');
}
const K = maybeTransposeToBNSHAndAddBias(
context,
params.batchSize,
params.numHeads,
params.kvSequenceLength,
params.headSize,
key,
bias,
params.hiddenSize,
);
const V = maybeTransposeToBNSHAndAddBias(
context,
params.batchSize,
params.numHeads,
params.kvSequenceLength,
params.vHeadSize,
value,
bias,
2 * params.hiddenSize,
);
applyAttention(context, Q, K, V, keyPaddingMask, undefined, pastKey, pastValue, attentionBias, params);
};