onnxruntime-web
Version:
A Javascript library for running ONNX models on browsers
156 lines (139 loc) • 5.66 kB
text/typescript
// Copyright (c) Microsoft Corporation. All rights reserved.
// Licensed under the MIT License.
import { DataType } from '../../../wasm-common';
import { TensorView } from '../../tensor-view';
import { ShapeUtil } from '../../util';
import { ComputeContext, ProgramInfo, ProgramInputTensorInfoDependency, ProgramUniform } from '../types';
import {
castToF32,
fillVector,
getMaxComponents,
inputVariable,
outputVariable,
ShaderHelper,
sumVector,
tensorTypeToWsglStorageType,
UniformsArrayType,
} from './common';
interface LayerNormAttributes {
simplified: boolean;
axis: number;
epsilon: number;
}
const validateInputs = (inputs: readonly TensorView[]): void => {
if (!inputs || inputs.length < 2) {
throw new Error('layerNorm requires at least 2 inputs.');
}
};
const createLayerNormProgramInfo = (
inputs: readonly TensorView[],
attributes: LayerNormAttributes,
outputCount: number,
): ProgramInfo => {
const simplified = attributes.simplified;
const xShape = inputs[0].dims;
const scale = inputs[1];
const bias = !simplified && inputs[2];
const outputShape = xShape;
const axis = ShapeUtil.normalizeAxis(attributes.axis, xShape.length);
const normCount = ShapeUtil.sizeToDimension(xShape, axis);
const normSize = ShapeUtil.sizeFromDimension(xShape, axis);
const scaleSize = ShapeUtil.size(scale.dims);
const biasSize = bias ? ShapeUtil.size(bias.dims) : 0;
if (scaleSize !== normSize || (bias && biasSize !== normSize)) {
throw new Error(`Size of X.shape()[axis:] == ${normSize}.
Size of scale and bias (if provided) must match this.
Got scale size of ${scaleSize} and bias size of ${biasSize}`);
}
const meanInvStdDevDim: number[] = [];
for (let i = 0; i < xShape.length; ++i) {
if (i < axis) {
meanInvStdDevDim.push(xShape[i]);
} else {
meanInvStdDevDim.push(1);
}
}
const components = getMaxComponents(normSize);
const inputDependencies: ProgramInputTensorInfoDependency[] = ['type', 'type'];
const programUniforms: ProgramUniform[] = [
{ type: DataType.uint32, data: normCount },
{ type: DataType.float, data: normSize },
{ type: DataType.uint32, data: Math.floor(normSize / components) },
{ type: DataType.float, data: attributes.epsilon },
];
if (bias) {
inputDependencies.push('type');
}
const hasMeanDataOutput = outputCount > 1;
const hasInvStdOutput = outputCount > 2;
const getShaderSource = (shaderHelper: ShaderHelper) => {
const dataType = tensorTypeToWsglStorageType(inputs[0].dataType);
const variables = [
inputVariable('x', inputs[0].dataType, inputs[0].dims, components),
inputVariable('scale', scale.dataType, scale.dims, components),
];
if (bias) {
variables.push(inputVariable('bias', bias.dataType, bias.dims, components));
}
variables.push(outputVariable('output', inputs[0].dataType, outputShape, components));
if (hasMeanDataOutput) {
variables.push(outputVariable('mean_data_output', DataType.float, meanInvStdDevDim));
}
if (hasInvStdOutput) {
variables.push(outputVariable('inv_std_output', DataType.float, meanInvStdDevDim));
}
const uniforms: UniformsArrayType = [
{ name: 'norm_count', type: 'u32' },
{ name: 'norm_size', type: 'f32' },
{ name: 'norm_size_vectorized', type: 'u32' },
{ name: 'epsilon', type: 'f32' },
];
return `
${shaderHelper.registerUniforms(uniforms).declareVariables(...variables)}
${shaderHelper.mainStart()}
${shaderHelper.guardAgainstOutOfBoundsWorkgroupSizes('uniforms.norm_count')}
let offset = global_idx * uniforms.norm_size_vectorized;
var mean_vector = ${fillVector('f32', components)};
var mean_square_vector = ${fillVector('f32', components)};
for (var h: u32 = 0u; h < uniforms.norm_size_vectorized; h++) {
let value = ${castToF32(dataType, components, 'x[h + offset]')};
mean_vector += value;
mean_square_vector += value * value;
}
let mean = ${sumVector('mean_vector', components)} / uniforms.norm_size;
let inv_std_dev = inverseSqrt(${sumVector('mean_square_vector', components)} / uniforms.norm_size ${
simplified ? '' : '- mean * mean'
} + uniforms.epsilon);
for (var j: u32 = 0; j < uniforms.norm_size_vectorized; j++) {
let f32input = ${castToF32(dataType, components, 'x[j + offset]')};
let f32scale = ${castToF32(dataType, components, 'scale[j]')};
output[j + offset] = ${variables[0].type.value}((f32input ${simplified ? '' : '- mean'}) * inv_std_dev * f32scale
${bias ? `+ ${castToF32(dataType, components, 'bias[j]')}` : ''}
);
}
${hasMeanDataOutput ? 'mean_data_output[global_idx] = mean' : ''};
${hasInvStdOutput ? 'inv_std_output[global_idx] = inv_std_dev' : ''};
}`;
};
const outputs = [{ dims: outputShape, dataType: inputs[0].dataType }];
if (hasMeanDataOutput) {
outputs.push({ dims: meanInvStdDevDim, dataType: DataType.float });
}
if (hasInvStdOutput) {
outputs.push({ dims: meanInvStdDevDim, dataType: DataType.float });
}
return {
name: 'LayerNormalization',
shaderCache: { hint: `${components};${outputCount};${simplified}`, inputDependencies },
getRunData: () => ({
outputs,
dispatchGroup: { x: Math.ceil(normCount / 64 /* workgroup size */) },
programUniforms,
}),
getShaderSource,
};
};
export const layerNorm = (context: ComputeContext, attributes: LayerNormAttributes): void => {
validateInputs(context.inputs);
context.compute(createLayerNormProgramInfo(context.inputs, attributes, context.outputCount));
};