onnxruntime-web
Version:
A Javascript library for running ONNX models on browsers
134 lines (120 loc) • 5.38 kB
text/typescript
// Copyright (c) Microsoft Corporation. All rights reserved.
// Licensed under the MIT License.
import { DataType } from '../../../wasm-common';
import { TensorView } from '../../tensor-view';
import { ShapeUtil } from '../../util';
import { AttributeWithCacheKey, createAttributeWithCacheKey } from '../attribute-with-cache-key';
import { ComputeContext, ProgramInfo, ProgramUniform } from '../types';
import { createTensorShapeVariables, inputVariable, outputVariable, ShaderHelper } from './common';
export interface GatherAttributes extends AttributeWithCacheKey {
axis: number;
}
const validateInputs = (inputs: readonly TensorView[]): void => {
if (!inputs || inputs.length !== 2) {
throw new Error('Gather requires 2 inputs.');
}
};
const createGatherProgramInfo = (inputs: readonly TensorView[], attributes: GatherAttributes): ProgramInfo => {
const inputShape = inputs[0].dims;
const indicesShape = inputs[1].dims;
const inputRank = inputShape.length;
const axis = ShapeUtil.normalizeAxis(attributes.axis, inputRank);
const outputShape = inputShape.slice(0);
outputShape.splice(axis, 1, ...indicesShape);
const axisDimLimit = inputShape[axis];
const components = inputs[0].dataType === DataType.bool ? 4 : 1;
const outputSize = Math.ceil(ShapeUtil.size(outputShape) / components);
const programUniforms: ProgramUniform[] = [
{ type: DataType.uint32, data: outputSize },
{ type: DataType.int32, data: axisDimLimit },
{ type: DataType.uint32, data: axis },
...createTensorShapeVariables(inputs[0].dims, inputs[1].dims, outputShape),
];
const getShaderSource = (shaderHelper: ShaderHelper) => {
const data = inputVariable('data', inputs[0].dataType, inputs[0].dims.length, components);
const indices = inputVariable('inputIndices', inputs[1].dataType, inputs[1].dims.length);
const output = outputVariable('output', inputs[0].dataType, outputShape.length, components);
const calcDataIndices = (x: number | string): string => {
const indicesRank = indicesShape.length;
let calcStr = `var indicesIndices${x} = ${indices.type.indices}(0);`;
for (let i = 0; i < indicesRank; i++) {
calcStr += `${indicesRank > 1 ? `indicesIndices${x}[${i}]` : `indicesIndices${x}`} = ${
outputShape.length > 1 ? `outputIndices${x}[uniforms.axis + ${i}]` : `outputIndices${x}`
};`;
}
calcStr += `
var idx${x} = ${indices.getByIndices(`indicesIndices${x}`)};
if (idx${x} < 0) {
idx${x} = idx${x} + uniforms.axisDimLimit;
}
var dataIndices${x} : ${data.type.indices};
`;
for (let i = 0, j = 0; i < inputRank; i++) {
if (i === axis) {
calcStr += `${inputRank > 1 ? `dataIndices${x}[${i}]` : `dataIndices${x}`} = u32(idx${x});`;
j += indicesRank;
} else {
calcStr += `${inputRank > 1 ? `dataIndices${x}[${i}]` : `dataIndices${x}`} = ${
outputShape.length > 1 ? `outputIndices${x}[${j}]` : `outputIndices${x}`
};`;
j++;
}
}
return calcStr;
};
let assignment: string;
if (inputs[0].dataType === DataType.bool) {
const singleAssignment = (resStr: string, x: number, typeCast = '') => `
let outputIndices${x} = ${output.offsetToIndices(`outputOffset + ${x}u`)};
${calcDataIndices(x)};
let offset${x} = ${data.indicesToOffset(`dataIndices${x}`)};
let index${x} = offset${x} / 4u;
let component${x} = offset${x} % 4u;
${resStr}[${x}] = ${typeCast}(${data.getByOffset(`index${x}`)}[component${x}]);
`;
assignment = `
let outputOffset = global_idx * ${components};
var value = vec4<u32>(0);
${singleAssignment('value', 0, 'u32')}
${singleAssignment('value', 1, 'u32')}
${singleAssignment('value', 2, 'u32')}
${singleAssignment('value', 3, 'u32')}
${output.setByOffset('global_idx', 'value')}
`;
} else {
assignment = `
let outputIndices = ${output.offsetToIndices('global_idx')};
${calcDataIndices('')};
let value = ${data.getByIndices('dataIndices')};
${output.setByOffset('global_idx', 'value')};
`;
}
return `
${shaderHelper
.registerUniform('outputSize', 'u32')
.registerUniform('axisDimLimit', 'i32')
.registerUniform('axis', 'u32')
.declareVariables(data, indices, output)}
${shaderHelper.mainStart()}
${shaderHelper.guardAgainstOutOfBoundsWorkgroupSizes('uniforms.outputSize')}
${assignment}
}`;
};
return {
name: 'Gather',
shaderCache: { hint: attributes.cacheKey, inputDependencies: ['rank', 'rank'] },
getRunData: () => ({
outputs: [{ dims: outputShape, dataType: inputs[0].dataType }],
dispatchGroup: { x: Math.ceil(outputSize / 64 /* workgroup size */) },
programUniforms,
}),
getShaderSource,
};
};
export const parseGatherAttributes = (attributes: Record<string, unknown>): GatherAttributes =>
createAttributeWithCacheKey({ axis: attributes.axis as number });
export const gather = (context: ComputeContext, attributes: GatherAttributes): void => {
const inputs = context.inputs;
validateInputs(inputs);
context.compute(createGatherProgramInfo(context.inputs, attributes));
};