onnxruntime-web
Version:
A Javascript library for running ONNX models on browsers
104 lines (85 loc) • 4.12 kB
text/typescript
// Copyright (c) Microsoft Corporation. All rights reserved.
// Licensed under the MIT License.
import { DataType } from '../../../wasm-common';
import { TensorView } from '../../tensor-view';
import { ShapeUtil } from '../../util';
import { AttributeWithCacheKey, createAttributeWithCacheKey } from '../attribute-with-cache-key';
import { ComputeContext, ProgramInfo, ProgramInputTensorInfoDependency, ProgramUniform } from '../types';
import { createTensorShapeVariables, inputVariable, outputVariable, ShaderHelper } from './common';
export interface GatherElementsAttributes extends AttributeWithCacheKey {
axis: number;
}
const validateInputs = (inputs: readonly TensorView[]): void => {
if (!inputs || inputs.length !== 2) {
throw new Error('GatherElements requires 2 inputs.');
}
if (inputs[0].dims.length < 1) {
throw new Error('GatherElements requires that the data input be rank >= 1.');
}
if (inputs[0].dims.length !== inputs[1].dims.length) {
throw new Error(`GatherElements requires that the data input and
indices input tensors be of same rank.`);
}
};
const createGatherElementsProgramInfo = (
inputs: readonly TensorView[],
attributes: GatherElementsAttributes,
): ProgramInfo => {
const inputShape = inputs[0].dims;
const inputOutputDataType = inputs[0].dataType;
const inputRank = inputShape.length;
const indicesShape = inputs[1].dims;
const indicesDataType = inputs[1].dataType;
const axis = ShapeUtil.normalizeAxis(attributes.axis, inputRank);
const axisDimLimit = inputShape[axis];
const outputShape = indicesShape.slice(0);
const outputSize = ShapeUtil.size(outputShape);
const input = inputVariable('input', inputOutputDataType, inputRank);
const indices = inputVariable('indicesInput', indicesDataType, indicesShape.length);
const output = outputVariable('output', inputOutputDataType, outputShape.length);
const programUniforms: ProgramUniform[] = [
{ type: DataType.uint32, data: outputSize },
{ type: DataType.int32, data: axisDimLimit },
{ type: DataType.uint32, data: axis },
];
programUniforms.push(...createTensorShapeVariables(inputShape, indicesShape, outputShape));
const inputDependencies: ProgramInputTensorInfoDependency[] = ['rank', 'rank'];
// int64 indices would be treated as little endian i32 with assumption they fall in i32 limits
// That assumption is safe as it's not possible to allocate >2gb buffer for input tensor
// Input data will be treated as u32 or two u32 for 8-byte tensors
const getShaderSource = (shaderHelper: ShaderHelper) => `
${shaderHelper
.registerUniform('outputSize', 'u32')
.registerUniform('axisDimLimit', 'i32')
.registerUniform('axis', 'u32')
.declareVariables(input, indices, output)}
${shaderHelper.mainStart()}
${shaderHelper.guardAgainstOutOfBoundsWorkgroupSizes('uniforms.outputSize')}
let outputIndices = ${output.offsetToIndices('global_idx')};
var idx = ${indices.getByOffset('global_idx')};
if (idx < 0) {
idx = idx + uniforms.axisDimLimit;
}
var inputIndices = ${input.type.indices}(outputIndices);
${input.indicesSet('inputIndices', 'uniforms.axis', 'u32(idx)')};
let value = ${input.getByIndices('inputIndices')};
${output.setByOffset('global_idx', 'value')};
}`;
return {
name: 'GatherElements',
shaderCache: { inputDependencies },
getRunData: () => ({
outputs: [{ dims: outputShape, dataType: inputs[0].dataType }],
dispatchGroup: { x: Math.ceil(outputSize / 64 /* workgroup size */) },
programUniforms,
}),
getShaderSource,
};
};
export const parseGatherElementsAttributes = (attributes: Record<string, unknown>): GatherElementsAttributes =>
createAttributeWithCacheKey({ axis: attributes.axis as number });
export const gatherElements = (context: ComputeContext, attributes: GatherElementsAttributes): void => {
const inputs = context.inputs;
validateInputs(inputs);
context.compute(createGatherElementsProgramInfo(context.inputs, attributes));
};