onnxruntime-web
Version:
A Javascript library for running ONNX models on browsers
197 lines (188 loc) • 9.01 kB
text/typescript
// Copyright (c) Microsoft Corporation. All rights reserved.
// Licensed under the MIT License.
import { DataType } from '../../../wasm-common';
import { TensorView } from '../../tensor-view';
import { ShapeUtil } from '../../util';
import { AttributeWithCacheKey, createAttributeWithCacheKey } from '../attribute-with-cache-key';
import { ComputeContext, ProgramInfo, ProgramUniform } from '../types';
import {
createTensorShapeVariables,
inputVariable,
outputVariable,
ShaderHelper,
tensorTypeToWsglValueType,
UniformsArrayType,
} from './common';
export interface GatherBlockQuantizedAttributes extends AttributeWithCacheKey {
gatherAxis: number;
quantizeAxis: number;
blockSize: number;
}
export const validateInputs = (inputs: readonly TensorView[], attributes: GatherBlockQuantizedAttributes): void => {
if (inputs.length < 3 || inputs.length > 4) {
throw new Error('GatherBlockQuantized requires 3 or 4 inputs.');
}
const quantizeAxis = ShapeUtil.normalizeAxis(attributes.quantizeAxis, inputs[0].dims.length);
const blockSize = attributes.blockSize;
const data = inputs[0];
const scales = inputs[2];
const zeroPoint = inputs.length === 4 ? inputs[3] : undefined;
if (
scales.dims.length !== data.dims.length ||
!data.dims
.map((d, i) => (i === quantizeAxis ? Math.ceil(d / blockSize) === scales.dims[i] : d === scales.dims[i]))
.reduce((a, b) => a && b, true)
) {
throw new Error(
'Scales must have the same rank as the input tensor and the dims should match except on gatherAxis.',
);
}
// TODO Uncomment the following check once the test case creation code is fixed to create data correctly aligned.
// const indices = inputs[1];
// const validIndex = (index: number) => index >= 0 && index < data.dims[attributes.gatherAxis];
// if (indices.dataType === DataType.int32 && indices.getInt32Array().some((v) => !validIndex(v)) ||
// indices.dataType === DataType.int64 && indices.getBigInt64Array().some((v) => !validIndex(Number(v)))) {
// throw new Error('Indices must be within the bounds of the gatherAxis.');
// }
if (zeroPoint) {
if (zeroPoint.dataType !== data.dataType) {
throw new Error('Zero point must have the same data type as the input tensor.');
}
if (
zeroPoint.dims.length !== scales.dims.length ||
!zeroPoint.dims.map((d, i) => d === scales.dims[i]).reduce((a, b) => a && b, true)
) {
throw new Error(
'Zero point must have the same rank as the input tensor and the dims should match except on quantizeAxis.',
);
}
}
};
const createGatherBlockQuantizedProgramInfo = (
inputs: readonly TensorView[],
attributes: GatherBlockQuantizedAttributes,
): ProgramInfo => {
const inputShape = inputs[0].dims;
const indicesShape = inputs[1].dims;
const inputRank = inputShape.length;
const gatherAxis = ShapeUtil.normalizeAxis(attributes.gatherAxis, inputRank);
const quantizeAxis = ShapeUtil.normalizeAxis(attributes.quantizeAxis, inputRank);
const outputShape = inputShape.slice(0);
outputShape.splice(gatherAxis, 1, ...indicesShape);
const outputSize = ShapeUtil.size(outputShape);
const outputType = inputs[2].dataType;
const inputType = inputs[0].dataType;
const isSigned = inputType === DataType.int4; // input data type is either int4 or uint4.
const programUniforms: ProgramUniform[] = [
{ type: DataType.uint32, data: outputSize },
{ type: DataType.uint32, data: quantizeAxis },
{ type: DataType.uint32, data: gatherAxis },
{ type: DataType.uint32, data: attributes.blockSize },
...createTensorShapeVariables(...inputs.map((input, _) => input.dims), outputShape),
];
const getShaderSource = (shaderHelper: ShaderHelper) => {
const data = inputVariable('data', inputs[0].dataType, inputs[0].dims.length);
const indices = inputVariable('inputIndices', inputs[1].dataType, inputs[1].dims.length);
const scales = inputVariable('scales', inputs[2].dataType, inputs[2].dims.length);
const zeroPoint =
inputs.length > 3 ? inputVariable('zeroPoint', inputs[3].dataType, inputs[3].dims.length) : undefined;
const output = outputVariable('output', outputType, outputShape.length);
const inputVariables = [data, indices, scales];
if (zeroPoint) {
inputVariables.push(zeroPoint);
}
const uniforms: UniformsArrayType = [
{ name: 'output_size', type: 'u32' },
{ name: 'quantize_axis', type: 'u32' },
{ name: 'gather_axis', type: 'u32' },
{ name: 'block_size', type: 'u32' },
];
return `
${shaderHelper.registerUniforms(uniforms).declareVariables(...inputVariables, output)}
${shaderHelper.mainStart()}
let output_indices = ${output.offsetToIndices('global_idx')};
var indices_indices = ${indices.type.indices}(0);
${(() => {
if (indicesShape.length > 1) {
return `
for (var i: u32 = 0; i < ${indicesShape.length}; i++) {
let index = ${output.indicesGet('output_indices', 'uniforms.gather_axis + i')};
${indices.indicesSet('indices_indices', 'i', 'index')};
}`;
} else {
return `indices_indices = ${output.indicesGet('output_indices', 'uniforms.gather_axis')};`;
}
})()};
var data_indices = ${data.type.indices}(0);
for (var i: u32 = 0; i < uniforms.gather_axis; i++) {
let index = ${output.indicesGet('output_indices', 'i')};
${data.indicesSet('data_indices', 'i', 'index')};
}
var index_from_indices = ${indices.getByIndices('indices_indices')};
if (index_from_indices < 0) {
index_from_indices += ${inputShape[gatherAxis]};
}
${data.indicesSet('data_indices', 'uniforms.gather_axis', 'u32(index_from_indices)')};
for (var i = uniforms.gather_axis + 1; i < ${outputShape.length}; i++) {
let index = ${output.indicesGet('output_indices', `i + ${indicesShape.length} - 1`)};
${data.indicesSet('data_indices', 'i', 'index')};
}
let data_offset = ${data.indicesToOffset('data_indices')};
let data_index = data_offset % 8;
// Convert 4-bit packed data to 8-bit packed data.
let packed_4bit_quantized_data = ${data.getByOffset('data_offset / 8')};
let packed_8bit_quantized_data = (packed_4bit_quantized_data >> (4 * (data_index % 2))) & 0x0f0f0f0f;
let quantized_data_vec = ${isSigned ? 'unpack4xI8' : 'unpack4xU8'}(u32(packed_8bit_quantized_data));
let quantized_data = quantized_data_vec[data_index / 2];
var scale_indices = data_indices;
let quantize_axis_index = ${scales.indicesGet('data_indices', 'uniforms.quantize_axis')} / uniforms.block_size;
${scales.indicesSet('scale_indices', 'uniforms.quantize_axis', 'quantize_axis_index')};
var scale = ${scales.getByIndices('scale_indices')};
${(() => {
if (!zeroPoint) {
return 'var zero_point = 0';
} else {
return `
let zero_point_indices = scale_indices;
let zero_point_offset = ${zeroPoint.indicesToOffset('zero_point_indices')};
let zero_point_index = zero_point_offset % 8;
let packed_4bit_zero_points = ${zeroPoint.getByOffset('zero_point_offset / 8')};
let packed_8bit_zero_points = (packed_4bit_zero_points >> (4 * (zero_point_index % 2))) & 0x0f0f0f0f;
let zero_point_vec = ${isSigned ? 'unpack4xI8' : 'unpack4xU8'}(u32(packed_8bit_zero_points));
let zero_point = zero_point_vec[zero_point_index / 2];`;
}
})()};
let dequantized_data = ${tensorTypeToWsglValueType(outputType)}(quantized_data - zero_point) * scale;
${output.setByOffset('global_idx', 'dequantized_data')};
}`;
};
return {
name: 'GatherBlockQuantized',
shaderCache: {
hint: `${attributes.cacheKey};${inputs
.filter((_, i) => i !== 1)
.map((input) => input.dims.join('_'))
.join(';')}`,
inputDependencies: Array.from({ length: inputs.length }, (_v, _i) => 'rank'),
},
getRunData: () => ({
outputs: [{ dims: outputShape, dataType: outputType }],
dispatchGroup: { x: Math.ceil(outputSize / 64 /* workgroup size */) },
programUniforms,
}),
getShaderSource,
};
};
export const gatherBlockQuantized = (context: ComputeContext, attributes: GatherBlockQuantizedAttributes): void => {
const inputs = context.inputs;
validateInputs(inputs, attributes);
context.compute(createGatherBlockQuantizedProgramInfo(context.inputs, attributes));
};
export const parseGatherBlockQuantizedAttributes = (
attributes: Record<string, unknown>,
): GatherBlockQuantizedAttributes =>
createAttributeWithCacheKey({
blockSize: attributes.blockSize as number,
gatherAxis: attributes.gatherAxis as number,
quantizeAxis: attributes.quantizeAxis as number,
});