UNPKG

onnxruntime-web

Version:

A Javascript library for running ONNX models on browsers

117 lines (106 loc) 4.95 kB
// Copyright (c) Microsoft Corporation. All rights reserved. // Licensed under the MIT License. import { DataType } from '../../../wasm-common'; import { TensorView } from '../../tensor-view'; import { ShapeUtil } from '../../util'; import { ComputeContext, ProgramInfo, ProgramUniform } from '../types'; import { createTensorShapeVariables, inputVariable, outputVariable, ShaderHelper } from './common'; const validateInputs = (inputs: readonly TensorView[]): void => { if (!inputs || inputs.length !== 2) { throw new Error('Expand requires 2 input.'); } const inputShape = inputs[0].dims; const shape = Array.from(inputs[1].getBigInt64Array(), Number); let shapeIndex = shape.length < inputShape.length ? 0 : shape.length - inputShape.length; let inputShapeIndex = inputShape.length < shape.length ? 0 : inputShape.length - shape.length; for (; shapeIndex < shape.length && inputShapeIndex < inputShape.length; ++shapeIndex, ++inputShapeIndex) { if ( shape[shapeIndex] !== inputShape[inputShapeIndex] && shape[shapeIndex] !== 1 && inputShape[inputShapeIndex] !== 1 ) { throw new Error('Expand requires shape to be broadcastable to input'); } } }; const getAdjustedShape = (shape1: readonly number[], shape2: readonly number[]): number[] => { const diff = shape1.length - shape2.length; const shape: number[] = []; for (let i = 0; i < diff; ++i) { shape.push(shape1[i]); } for (let i = 0; i < shape2.length; ++i) { shape.push(shape2[i] === 1 ? shape1[i + diff] : shape2[i]); } return shape; }; const calculateOutputShape = (inputShape: readonly number[], shape: readonly number[]): number[] => inputShape.length > shape.length ? getAdjustedShape(inputShape, shape) : getAdjustedShape(shape, inputShape); const createExpandProgramInfo = (inputs: readonly TensorView[]): ProgramInfo => { const inputShape = inputs[0].dims; const shape = Array.from(inputs[1].getBigInt64Array(), Number); const outputShape: number[] = calculateOutputShape(inputShape, shape); const dataType = inputs[0].dataType; const isBoolOrScalar = dataType === DataType.bool || ShapeUtil.size(inputShape) === 1; const iComponents = dataType === DataType.bool ? 4 : inputShape.length > 0 && inputShape[inputShape.length - 1] % 4 === 0 ? 4 : 1; const components = isBoolOrScalar ? 4 : outputShape.length > 0 && outputShape[outputShape.length - 1] % 4 === 0 ? 4 : 1; const outputSize = Math.ceil(ShapeUtil.size(outputShape) / components); const getShaderSource = (shaderHelper: ShaderHelper) => { const input = inputVariable('input', dataType, inputShape.length, iComponents); const output = outputVariable('output', dataType, outputShape.length, components); let assignment: string; if (dataType === DataType.bool) { const singleAssignment = (resStr: string, x: number, typeCast = '') => ` let outputIndices${x} = ${output.offsetToIndices(`outputOffset + ${x}u`)}; let offset${x} = ${input.broadcastedIndicesToOffset(`outputIndices${x}`, output)}; let index${x} = offset${x} / 4u; let component${x} = offset${x} % 4u; ${resStr}[${x}] = ${typeCast}(${input.getByOffset(`index${x}`)}[component${x}]); `; assignment = ` let outputOffset = global_idx * ${components}; var data = vec4<u32>(0); ${singleAssignment('data', 0, 'u32')} ${singleAssignment('data', 1, 'u32')} ${singleAssignment('data', 2, 'u32')} ${singleAssignment('data', 3, 'u32')} ${output.setByOffset('global_idx', 'data')} }`; } else { assignment = ` let outputIndices = ${output.offsetToIndices(`global_idx * ${components}`)}; let inputOffset = ${input.broadcastedIndicesToOffset('outputIndices', output)}; let data = ${output.type.value}(${input.getByOffset(`inputOffset / ${iComponents}`)}); ${output.setByOffset('global_idx', 'data')} }`; } return ` ${shaderHelper.registerUniform('vec_size', 'u32').declareVariables(input, output)} ${shaderHelper.mainStart()} ${shaderHelper.guardAgainstOutOfBoundsWorkgroupSizes('uniforms.vec_size')} ${assignment}`; }; const programUniforms: ProgramUniform[] = [ { type: DataType.uint32, data: outputSize }, ...createTensorShapeVariables(inputShape, outputShape), ]; return { name: 'Expand', shaderCache: { hint: `${outputShape.length};${iComponents}${components}`, inputDependencies: ['rank'] }, getShaderSource, getRunData: () => ({ outputs: [{ dims: outputShape, dataType: inputs[0].dataType }], dispatchGroup: { x: Math.ceil(outputSize / 64 /* workgroup size */) }, programUniforms, }), }; }; export const expand = (context: ComputeContext): void => { validateInputs(context.inputs); context.compute(createExpandProgramInfo(context.inputs), { inputs: [0] }); };