onnxruntime-web
Version:
A Javascript library for running ONNX models on browsers
117 lines (106 loc) • 4.95 kB
text/typescript
// Copyright (c) Microsoft Corporation. All rights reserved.
// Licensed under the MIT License.
import { DataType } from '../../../wasm-common';
import { TensorView } from '../../tensor-view';
import { ShapeUtil } from '../../util';
import { ComputeContext, ProgramInfo, ProgramUniform } from '../types';
import { createTensorShapeVariables, inputVariable, outputVariable, ShaderHelper } from './common';
const validateInputs = (inputs: readonly TensorView[]): void => {
if (!inputs || inputs.length !== 2) {
throw new Error('Expand requires 2 input.');
}
const inputShape = inputs[0].dims;
const shape = Array.from(inputs[1].getBigInt64Array(), Number);
let shapeIndex = shape.length < inputShape.length ? 0 : shape.length - inputShape.length;
let inputShapeIndex = inputShape.length < shape.length ? 0 : inputShape.length - shape.length;
for (; shapeIndex < shape.length && inputShapeIndex < inputShape.length; ++shapeIndex, ++inputShapeIndex) {
if (
shape[shapeIndex] !== inputShape[inputShapeIndex] &&
shape[shapeIndex] !== 1 &&
inputShape[inputShapeIndex] !== 1
) {
throw new Error('Expand requires shape to be broadcastable to input');
}
}
};
const getAdjustedShape = (shape1: readonly number[], shape2: readonly number[]): number[] => {
const diff = shape1.length - shape2.length;
const shape: number[] = [];
for (let i = 0; i < diff; ++i) {
shape.push(shape1[i]);
}
for (let i = 0; i < shape2.length; ++i) {
shape.push(shape2[i] === 1 ? shape1[i + diff] : shape2[i]);
}
return shape;
};
const calculateOutputShape = (inputShape: readonly number[], shape: readonly number[]): number[] =>
inputShape.length > shape.length ? getAdjustedShape(inputShape, shape) : getAdjustedShape(shape, inputShape);
const createExpandProgramInfo = (inputs: readonly TensorView[]): ProgramInfo => {
const inputShape = inputs[0].dims;
const shape = Array.from(inputs[1].getBigInt64Array(), Number);
const outputShape: number[] = calculateOutputShape(inputShape, shape);
const dataType = inputs[0].dataType;
const isBoolOrScalar = dataType === DataType.bool || ShapeUtil.size(inputShape) === 1;
const iComponents =
dataType === DataType.bool ? 4 : inputShape.length > 0 && inputShape[inputShape.length - 1] % 4 === 0 ? 4 : 1;
const components = isBoolOrScalar
? 4
: outputShape.length > 0 && outputShape[outputShape.length - 1] % 4 === 0
? 4
: 1;
const outputSize = Math.ceil(ShapeUtil.size(outputShape) / components);
const getShaderSource = (shaderHelper: ShaderHelper) => {
const input = inputVariable('input', dataType, inputShape.length, iComponents);
const output = outputVariable('output', dataType, outputShape.length, components);
let assignment: string;
if (dataType === DataType.bool) {
const singleAssignment = (resStr: string, x: number, typeCast = '') => `
let outputIndices${x} = ${output.offsetToIndices(`outputOffset + ${x}u`)};
let offset${x} = ${input.broadcastedIndicesToOffset(`outputIndices${x}`, output)};
let index${x} = offset${x} / 4u;
let component${x} = offset${x} % 4u;
${resStr}[${x}] = ${typeCast}(${input.getByOffset(`index${x}`)}[component${x}]);
`;
assignment = `
let outputOffset = global_idx * ${components};
var data = vec4<u32>(0);
${singleAssignment('data', 0, 'u32')}
${singleAssignment('data', 1, 'u32')}
${singleAssignment('data', 2, 'u32')}
${singleAssignment('data', 3, 'u32')}
${output.setByOffset('global_idx', 'data')}
}`;
} else {
assignment = `
let outputIndices = ${output.offsetToIndices(`global_idx * ${components}`)};
let inputOffset = ${input.broadcastedIndicesToOffset('outputIndices', output)};
let data = ${output.type.value}(${input.getByOffset(`inputOffset / ${iComponents}`)});
${output.setByOffset('global_idx', 'data')}
}`;
}
return `
${shaderHelper.registerUniform('vec_size', 'u32').declareVariables(input, output)}
${shaderHelper.mainStart()}
${shaderHelper.guardAgainstOutOfBoundsWorkgroupSizes('uniforms.vec_size')}
${assignment}`;
};
const programUniforms: ProgramUniform[] = [
{ type: DataType.uint32, data: outputSize },
...createTensorShapeVariables(inputShape, outputShape),
];
return {
name: 'Expand',
shaderCache: { hint: `${outputShape.length};${iComponents}${components}`, inputDependencies: ['rank'] },
getShaderSource,
getRunData: () => ({
outputs: [{ dims: outputShape, dataType: inputs[0].dataType }],
dispatchGroup: { x: Math.ceil(outputSize / 64 /* workgroup size */) },
programUniforms,
}),
};
};
export const expand = (context: ComputeContext): void => {
validateInputs(context.inputs);
context.compute(createExpandProgramInfo(context.inputs), { inputs: [0] });
};