UNPKG

onnxruntime-web

Version:

A Javascript library for running ONNX models on browsers

119 lines (102 loc) 4.7 kB
// Copyright (c) Microsoft Corporation. All rights reserved. // Licensed under the MIT License. import { DataType } from '../../../wasm-common'; import { TensorView } from '../../tensor-view'; import { ShapeUtil } from '../../util'; import { AttributeWithCacheKey, createAttributeWithCacheKey } from '../attribute-with-cache-key'; import { ComputeContext, ProgramInfo } from '../types'; import { createTensorShapeVariables, IndicesHelper, inputVariable, outputVariable, ShaderHelper } from './common'; export interface FormatAttributes { readonly format: 'NHWC' | 'NCHW'; } export interface DepthToSpaceAttributes extends FormatAttributes, AttributeWithCacheKey { readonly blocksize: number; readonly mode: string; } const validateInputs = (inputs: readonly TensorView[]): void => { if (!inputs || inputs.length !== 1) { throw new Error('DepthToSpace requires 1 input.'); } if (inputs[0].dims.length !== 4) { throw new Error('DepthToSpace requires 4D input.'); } }; const permFunctionBody = (perm: number[], rank: number, input: IndicesHelper, output: IndicesHelper): string => { const reverseFunc = []; reverseFunc.push(`fn perm(i: ${output.type.indices}) -> ${input.type.indices} { var a: ${input.type.indices};`); for (let i = 0; i < rank; ++i) { reverseFunc.push(input.indicesSet('a', perm[i], `i[${i}]`)); } reverseFunc.push('return a;}'); return reverseFunc.join('\n'); }; const createDepthToSpaceProgramInfo = (inputTensor: TensorView, attributes: DepthToSpaceAttributes): ProgramInfo => { let n: number, h: number, w: number, c: number; let shape: number[]; let perm: number[]; const isChannelLast = attributes.format === 'NHWC'; const blocksize = attributes.blocksize; const isDCRmode = attributes.mode === 'DCR'; if (isChannelLast) { [n, h, w, c] = inputTensor.dims; shape = isDCRmode ? [n, h, w, blocksize, blocksize, c / blocksize ** 2] : [n, h, w, c / blocksize ** 2, blocksize, blocksize]; perm = isDCRmode ? [0, 1, 3, 2, 4, 5] : [0, 1, 4, 2, 5, 3]; } else { [n, h, w, c] = [inputTensor.dims[0], inputTensor.dims[2], inputTensor.dims[3], inputTensor.dims[1]]; shape = isDCRmode ? [n, blocksize, blocksize, c / blocksize ** 2, h, w] : [n, c / blocksize ** 2, blocksize, blocksize, h, w]; perm = isDCRmode ? [0, 3, 4, 1, 5, 2] : [0, 1, 4, 2, 5, 3]; } const reshapedInputTensor = inputTensor.reshape(shape); const reshapedInputRank = reshapedInputTensor.dims.length; const inputDataType = inputTensor.dataType; const reshapedInput = inputVariable('a', inputDataType, reshapedInputRank); const permedOutput = outputVariable('output', inputDataType, reshapedInputRank); const getShaderSource = (shaderHelper: ShaderHelper) => ` ${shaderHelper.registerUniform('output_size', 'u32').declareVariables(reshapedInput, permedOutput)} ${permFunctionBody(perm, reshapedInputRank, reshapedInput, permedOutput)} ${shaderHelper.mainStart()} ${shaderHelper.guardAgainstOutOfBoundsWorkgroupSizes('uniforms.output_size')} let indices = ${permedOutput.offsetToIndices('global_idx')}; let aIndices = perm(indices); ${permedOutput.setByOffset('global_idx', reshapedInput.getByIndices('aIndices'))} }`; return { name: 'DepthToSpace', shaderCache: { hint: `${inputTensor.dims};${attributes.blocksize};${attributes.mode}`, inputDependencies: ['rank'], }, getRunData: (inputs) => { const outputShape = isChannelLast ? [n, h * blocksize, w * blocksize, c / blocksize ** 2] : [n, c / blocksize ** 2, h * blocksize, w * blocksize]; const outputSize = ShapeUtil.size(outputShape); const shapeBeforePerm = reshapedInputTensor.dims; const shapeAfterPerm = ShapeUtil.sortBasedOnPerm(shapeBeforePerm, perm); return { outputs: [{ dims: outputShape, dataType: inputs[0].dataType }], dispatchGroup: { x: Math.ceil(outputSize / 64 /* workgroup size */) }, programUniforms: [ { type: DataType.uint32, data: outputSize }, ...createTensorShapeVariables(shapeBeforePerm, shapeAfterPerm), ], }; }, getShaderSource, }; }; export const depthToSpace = (context: ComputeContext, attributes: DepthToSpaceAttributes): void => { validateInputs(context.inputs); context.compute(createDepthToSpaceProgramInfo(context.inputs[0], attributes)); }; export const parseDepthToSpaceAttributes = (attributes: Record<string, unknown>): DepthToSpaceAttributes => createAttributeWithCacheKey({ blocksize: attributes.blocksize as number, mode: attributes.mode as string, format: attributes.format as 'NHWC' | 'NCHW', });