onnxruntime-web
Version:
A Javascript library for running ONNX models on browsers
119 lines (102 loc) • 4.7 kB
text/typescript
// Copyright (c) Microsoft Corporation. All rights reserved.
// Licensed under the MIT License.
import { DataType } from '../../../wasm-common';
import { TensorView } from '../../tensor-view';
import { ShapeUtil } from '../../util';
import { AttributeWithCacheKey, createAttributeWithCacheKey } from '../attribute-with-cache-key';
import { ComputeContext, ProgramInfo } from '../types';
import { createTensorShapeVariables, IndicesHelper, inputVariable, outputVariable, ShaderHelper } from './common';
export interface FormatAttributes {
readonly format: 'NHWC' | 'NCHW';
}
export interface DepthToSpaceAttributes extends FormatAttributes, AttributeWithCacheKey {
readonly blocksize: number;
readonly mode: string;
}
const validateInputs = (inputs: readonly TensorView[]): void => {
if (!inputs || inputs.length !== 1) {
throw new Error('DepthToSpace requires 1 input.');
}
if (inputs[0].dims.length !== 4) {
throw new Error('DepthToSpace requires 4D input.');
}
};
const permFunctionBody = (perm: number[], rank: number, input: IndicesHelper, output: IndicesHelper): string => {
const reverseFunc = [];
reverseFunc.push(`fn perm(i: ${output.type.indices}) -> ${input.type.indices} {
var a: ${input.type.indices};`);
for (let i = 0; i < rank; ++i) {
reverseFunc.push(input.indicesSet('a', perm[i], `i[${i}]`));
}
reverseFunc.push('return a;}');
return reverseFunc.join('\n');
};
const createDepthToSpaceProgramInfo = (inputTensor: TensorView, attributes: DepthToSpaceAttributes): ProgramInfo => {
let n: number, h: number, w: number, c: number;
let shape: number[];
let perm: number[];
const isChannelLast = attributes.format === 'NHWC';
const blocksize = attributes.blocksize;
const isDCRmode = attributes.mode === 'DCR';
if (isChannelLast) {
[n, h, w, c] = inputTensor.dims;
shape = isDCRmode
? [n, h, w, blocksize, blocksize, c / blocksize ** 2]
: [n, h, w, c / blocksize ** 2, blocksize, blocksize];
perm = isDCRmode ? [0, 1, 3, 2, 4, 5] : [0, 1, 4, 2, 5, 3];
} else {
[n, h, w, c] = [inputTensor.dims[0], inputTensor.dims[2], inputTensor.dims[3], inputTensor.dims[1]];
shape = isDCRmode
? [n, blocksize, blocksize, c / blocksize ** 2, h, w]
: [n, c / blocksize ** 2, blocksize, blocksize, h, w];
perm = isDCRmode ? [0, 3, 4, 1, 5, 2] : [0, 1, 4, 2, 5, 3];
}
const reshapedInputTensor = inputTensor.reshape(shape);
const reshapedInputRank = reshapedInputTensor.dims.length;
const inputDataType = inputTensor.dataType;
const reshapedInput = inputVariable('a', inputDataType, reshapedInputRank);
const permedOutput = outputVariable('output', inputDataType, reshapedInputRank);
const getShaderSource = (shaderHelper: ShaderHelper) => `
${shaderHelper.registerUniform('output_size', 'u32').declareVariables(reshapedInput, permedOutput)}
${permFunctionBody(perm, reshapedInputRank, reshapedInput, permedOutput)}
${shaderHelper.mainStart()}
${shaderHelper.guardAgainstOutOfBoundsWorkgroupSizes('uniforms.output_size')}
let indices = ${permedOutput.offsetToIndices('global_idx')};
let aIndices = perm(indices);
${permedOutput.setByOffset('global_idx', reshapedInput.getByIndices('aIndices'))}
}`;
return {
name: 'DepthToSpace',
shaderCache: {
hint: `${inputTensor.dims};${attributes.blocksize};${attributes.mode}`,
inputDependencies: ['rank'],
},
getRunData: (inputs) => {
const outputShape = isChannelLast
? [n, h * blocksize, w * blocksize, c / blocksize ** 2]
: [n, c / blocksize ** 2, h * blocksize, w * blocksize];
const outputSize = ShapeUtil.size(outputShape);
const shapeBeforePerm = reshapedInputTensor.dims;
const shapeAfterPerm = ShapeUtil.sortBasedOnPerm(shapeBeforePerm, perm);
return {
outputs: [{ dims: outputShape, dataType: inputs[0].dataType }],
dispatchGroup: { x: Math.ceil(outputSize / 64 /* workgroup size */) },
programUniforms: [
{ type: DataType.uint32, data: outputSize },
...createTensorShapeVariables(shapeBeforePerm, shapeAfterPerm),
],
};
},
getShaderSource,
};
};
export const depthToSpace = (context: ComputeContext, attributes: DepthToSpaceAttributes): void => {
validateInputs(context.inputs);
context.compute(createDepthToSpaceProgramInfo(context.inputs[0], attributes));
};
export const parseDepthToSpaceAttributes = (attributes: Record<string, unknown>): DepthToSpaceAttributes =>
createAttributeWithCacheKey({
blocksize: attributes.blocksize as number,
mode: attributes.mode as string,
format: attributes.format as 'NHWC' | 'NCHW',
});