onnxruntime-web
Version:
A Javascript library for running ONNX models on browsers
422 lines (390 loc) • 15.8 kB
text/typescript
// Copyright (c) Microsoft Corporation. All rights reserved.
// Licensed under the MIT License.
import { TensorView } from '../../tensor-view';
import { PoolConvUtil } from '../../util';
import { AttributeWithCacheKey } from '../attribute-with-cache-key';
import { ComputeContext } from '../types';
import { createConv2DMatMulProgramInfo } from './3rd-party/conv2d_mm_webgpu';
import { computeConv3DInfo, createConv3DNaiveProgramInfo } from './3rd-party/conv3d_naive_webgpu';
import { createMatmulProgramInfo } from './3rd-party/matmul_packed_webgpu';
import { createGroupedConvProgramInfo, createGroupedConvVectorizeProgramInfo } from './conv-grouped';
import { InternalActivationAttributes, parseInternalActivationAttributes } from './fuse-utils';
import { createNaiveMatmulProgramInfo } from './matmul-shaders';
import { createTransposeProgramInfo } from './transpose';
export const calculateOutputShape = (
inputShape: readonly number[],
kernelShape: readonly number[],
dilations: readonly number[],
adjustPads: readonly number[],
strides: readonly number[],
isChannelLast: boolean,
): number[] => {
const batchSize = inputShape[0];
const inputSpatialShape = inputShape.slice(isChannelLast ? 1 : 2, isChannelLast ? 3 : 4);
const spatialRank = inputSpatialShape.length;
const outChannels = kernelShape[0];
const kernelSpatialShape = kernelShape.slice(2);
const dilatedKernelShape = kernelSpatialShape.map((v, i) => v + (v - 1) * (dilations[i] - 1));
const inputSpatialShapeWithPad = inputSpatialShape.map((v, i) => v + adjustPads[i] + adjustPads[i + spatialRank]);
const outputShape = inputSpatialShapeWithPad.map((v, i) =>
Math.floor((v - dilatedKernelShape[i] + strides[i]) / strides[i]),
);
outputShape.splice(0, 0, batchSize);
outputShape.splice(isChannelLast ? 3 : 1, 0, outChannels);
return outputShape;
};
export interface ConvAttributes extends InternalActivationAttributes, AttributeWithCacheKey {
readonly autoPad: string;
readonly dilations: readonly number[];
readonly format: 'NHWC' | 'NCHW';
readonly group: number;
readonly kernelShape: readonly number[];
readonly pads: readonly number[];
readonly strides: readonly number[];
readonly wIsConst: boolean;
}
// for transposing weight tensor from [M, C/group, KH, KW] to [KH, KW, C/group, M]
const weightTransposeAttribute = [2, 3, 1, 0];
const validateInputs = (inputs: readonly TensorView[], attributes: ConvAttributes): void => {
// Refer to the below link for all input checks
// https://github.com/onnx/onnx/blob/master/docs/Operators.md#Conv
if (!inputs || (inputs.length !== 2 && inputs.length !== 3)) {
throw new Error('Conv requires 2 or 3 inputs');
}
if (inputs[0].dims.length > 5) {
throw new Error('greater than 5D is not supported');
}
if (inputs[0].dims.length !== inputs[1].dims.length) {
throw new Error('filter does not have same dimension as input');
}
// FILTER_IN_CHANNEL should be equal to DATA_CHANNEL
const dataChannel = inputs[0].dims[attributes.format === 'NHWC' ? inputs[0].dims.length - 1 : 1];
const filterInChannel = inputs[1].dims[1] * attributes.group;
if (dataChannel !== filterInChannel) {
throw new Error('FILTER_IN_CHANNEL should be equal to DATA_CHANNEL');
}
// if bias is provided it should be 1D and the number of elements should be equal to the number of feature maps
if (inputs.length === 3 && (inputs[2].dims.length !== 1 || inputs[1].dims[0] !== inputs[2].dims[0])) {
throw new Error('invalid bias');
}
const spatialRank = inputs[0].dims.length - 2;
// wrong dilations dimension
if (attributes.dilations.length !== spatialRank) {
throw new Error(`dilations should be ${spatialRank}D`);
}
// Wrong strides dimension
if (attributes.strides.length !== spatialRank) {
throw new Error(`strides should be ${spatialRank}D`);
}
// Wrong pads dimension
if (attributes.pads.length !== spatialRank * 2) {
throw new Error(`pads should be ${spatialRank * 2}D`);
}
// if kernelShape is specified, it's data length must be 2 less than dims length of the weights tensor
// (the first 2 dims are batch_size and channels)
if (attributes.kernelShape.length !== 0 && attributes.kernelShape.length !== inputs[1].dims.length - 2) {
throw new Error('invalid kernel shape');
}
};
const getAdjustedConvAttributes = <T extends ConvAttributes>(attributes: T, inputs: readonly TensorView[]): T => {
const kernelShape = attributes.kernelShape.slice();
// if kernelShape is not well specified in the attributes, infer it from the weight tensor dims
if (kernelShape.length < inputs[1].dims.length - 2) {
kernelShape.push(...Array(inputs[1].dims.length - 2 - kernelShape.length).fill(0));
}
for (let i = 2; i < inputs[1].dims.length; ++i) {
if (kernelShape[i - 2] === 0) {
kernelShape[i - 2] = inputs[1].dims[i];
}
}
const pads = attributes.pads.slice();
PoolConvUtil.adjustPadsBasedOnAutoPad(
inputs[0].dims,
attributes.strides,
attributes.dilations,
kernelShape,
pads,
attributes.format === 'NHWC',
attributes.autoPad,
);
// always return a new object so does not modify the original attributes
const newAttributes: T = Object.assign({}, attributes);
Object.assign(newAttributes, { kernelShape, pads });
return newAttributes;
};
export const parseConvAttributes = (attributes: Record<string, unknown>): ConvAttributes => {
const activationAttributes = parseInternalActivationAttributes(attributes);
// TODO : Make this generic enough to compute default attributes for multi-dimensional conv
const format = attributes.format as 'NHWC' | 'NCHW';
const autoPad = ['NOTSET', 'VALID', 'SAME_UPPER', 'SAME_LOWER'][attributes.auto_pad as number];
const dilations = attributes.dilations as number[];
const group = attributes.group as number;
const kernelShape = attributes.kernel_shape as number[];
const pads = attributes.pads as number[];
const strides = attributes.strides as number[];
const wIsConst = (attributes.w_is_const as () => boolean)();
return {
autoPad,
format,
dilations,
group,
kernelShape,
pads,
strides,
wIsConst,
...activationAttributes,
cacheKey: `${attributes.format};${activationAttributes.activation};`,
};
};
const conv2d = (
context: ComputeContext,
inputs: readonly TensorView[],
attributes: ConvAttributes,
squeezeOutputShapeFunction?: (shape: readonly number[]) => number[],
): void => {
// check attributes
// const hasPreluActivationWeights = false; /* TODO: add support for prelu activation weights */
const isChannelsLast = attributes.format === 'NHWC';
const outputShape = calculateOutputShape(
inputs[0].dims,
inputs[1].dims,
attributes.dilations,
attributes.pads,
attributes.strides,
isChannelsLast,
);
if (attributes.group !== 1) {
const convInputs = [inputs[0]];
if (isChannelsLast) {
const transposedWeight =
(context.kernelCustomData.wT as TensorView | undefined) ??
context.compute(createTransposeProgramInfo(inputs[1], weightTransposeAttribute), {
inputs: [1],
outputs: [attributes.wIsConst ? -2 : -1],
})[0];
if (attributes.wIsConst && !context.kernelCustomData.wT) {
context.kernelCustomData.wT = transposedWeight;
}
convInputs.push(transposedWeight);
} else {
convInputs.push(inputs[1]);
}
if (inputs.length === 3) {
convInputs.push(inputs[2]);
}
// NVIDIA GPU with ampere architecture fails with below 2 cases, but we couldn't repro them with any other
// GPUs. So just disable vectorize on NVIDIA ampere to ensure always correct outputs.
// [webgpu]Conv - conv - vectorize group - B
// [webgpu]Conv - conv - vectorize group - D
const enableGroupedConvVectorize = !context.adapterInfo.isArchitecture('ampere');
if (
enableGroupedConvVectorize &&
isChannelsLast &&
inputs[1].dims[0] === attributes.group &&
inputs[1].dims[1] === 1 &&
attributes.dilations[0] === 1 &&
attributes.dilations[1] === 1
) {
context.compute(
createGroupedConvVectorizeProgramInfo(convInputs, attributes, outputShape, squeezeOutputShapeFunction),
{ inputs: convInputs },
);
} else {
context.compute(createGroupedConvProgramInfo(convInputs, attributes, outputShape, squeezeOutputShapeFunction), {
inputs: convInputs,
});
}
return;
}
const hasBias = inputs.length === 3;
const inputHeight = inputs[0].dims[isChannelsLast ? 1 : 2];
const inputWidth = inputs[0].dims[isChannelsLast ? 2 : 3];
const inputChannels = inputs[0].dims[isChannelsLast ? 3 : 1];
const weightHeight = inputs[1].dims[2];
const weightWidth = inputs[1].dims[3];
const outHeight = outputShape[isChannelsLast ? 1 : 2];
const outWidth = outputShape[isChannelsLast ? 2 : 3];
const outChannels = outputShape[isChannelsLast ? 3 : 1];
const sameSize =
isChannelsLast &&
weightHeight === inputHeight &&
weightWidth === inputWidth &&
attributes.pads[0] === 0 &&
attributes.pads[1] === 0;
if (
sameSize ||
(weightHeight === 1 &&
weightWidth === 1 &&
attributes.dilations[0] === 1 &&
attributes.dilations[1] === 1 &&
attributes.strides[0] === 1 &&
attributes.strides[1] === 1 &&
attributes.pads[0] === 0 &&
attributes.pads[1] === 0)
) {
// conv2dByMatMul
const batch = outputShape[0];
let xReshaped, wReshaped, matmulOutputShape;
const matmulInputs = [];
if (isChannelsLast) {
const transposedWeight =
(context.kernelCustomData.wT as TensorView | undefined) ??
context.compute(createTransposeProgramInfo(inputs[1], weightTransposeAttribute), {
inputs: [1],
outputs: [attributes.wIsConst ? -2 : -1],
})[0];
if (attributes.wIsConst && !context.kernelCustomData.wT) {
context.kernelCustomData.wT = transposedWeight;
}
if (sameSize) {
const sharedDim = inputHeight * inputWidth * inputChannels;
xReshaped = inputs[0].reshape([1, batch, sharedDim]);
wReshaped = transposedWeight.reshape([1, sharedDim, outChannels]);
matmulOutputShape = [1, batch, outChannels];
} else {
xReshaped = inputs[0].reshape([batch, inputHeight * inputWidth, inputChannels]);
wReshaped = transposedWeight.reshape([1, inputChannels, outChannels]);
matmulOutputShape = [batch, outHeight * outWidth, outChannels];
}
matmulInputs.push(xReshaped);
matmulInputs.push(wReshaped);
} else {
xReshaped = inputs[0].reshape([batch, inputChannels, inputHeight * inputWidth]);
wReshaped = inputs[1].reshape([1, outChannels, inputChannels]);
matmulOutputShape = [batch, outChannels, outHeight * outWidth];
matmulInputs.push(wReshaped);
matmulInputs.push(xReshaped);
}
if (hasBias) {
matmulInputs.push(inputs[2]);
}
const N = matmulOutputShape[2];
const K = matmulInputs[0].dims[matmulInputs[0].dims.length - 1];
// Tune the threshold.
if (N < 8 && K < 8) {
context.compute(
createNaiveMatmulProgramInfo(
matmulInputs,
attributes,
outputShape,
matmulOutputShape,
isChannelsLast,
squeezeOutputShapeFunction,
),
{ inputs: matmulInputs },
);
} else {
context.compute(
createMatmulProgramInfo(
matmulInputs,
attributes,
outputShape,
matmulOutputShape,
isChannelsLast,
squeezeOutputShapeFunction,
),
{ inputs: matmulInputs },
);
}
return;
}
// TODO: implement conv2dWithIm2Col()
const sequentialAccessByThreads = /* backend.adapterInfo.isIntel() */ true;
// STEP.1: transpose weight
const transposedWeight =
(context.kernelCustomData.wT as TensorView | undefined) ??
context.compute(createTransposeProgramInfo(inputs[1], weightTransposeAttribute), {
inputs: [1],
outputs: [attributes.wIsConst ? -2 : -1],
})[0];
if (attributes.wIsConst && !context.kernelCustomData.wT) {
context.kernelCustomData.wT = transposedWeight;
}
// STEP.2: prepare reshaped inputs
const convInputs = [inputs[0], transposedWeight];
if (hasBias) {
convInputs.push(inputs[2]);
}
// STEP.3: compute matmul
const dimAOuter = isChannelsLast ? outHeight * outWidth : outChannels;
const dimBOuter = isChannelsLast ? outChannels : outHeight * outWidth;
const dimInner = weightHeight * weightWidth * inputChannels;
context.compute(
createConv2DMatMulProgramInfo(
convInputs,
attributes,
outputShape,
dimAOuter,
dimBOuter,
dimInner,
hasBias,
sequentialAccessByThreads,
squeezeOutputShapeFunction,
),
{ inputs: convInputs },
);
};
const conv1d = (context: ComputeContext, attributes: ConvAttributes): void => {
// extend the input to 2D by adding H dimension
const isChannelLast = attributes.format === 'NHWC';
const inputs = [
context.inputs[0].reshape(
isChannelLast
? // [N, W, C] -> [N, H=1, W, C]
[context.inputs[0].dims[0], 1, context.inputs[0].dims[1], context.inputs[0].dims[2]]
: // [N, C, W] -> [N, C, H=1, W]
[context.inputs[0].dims[0], context.inputs[0].dims[1], 1, context.inputs[0].dims[2]],
),
//[FILTER_OUT_CHANNEL, FILTER_IN_CHANNEL, kW] -> [FILTER_OUT_CHANNEL, FILTER_IN_CHANNEL, kH=1, kW]
context.inputs[1].reshape([context.inputs[1].dims[0], context.inputs[1].dims[1], 1, context.inputs[1].dims[2]]),
];
if (context.inputs.length === 3) {
inputs.push(context.inputs[2]);
}
const pads = [0, attributes.pads[0], 0, attributes.pads[1]];
const strides = [1].concat(attributes.strides);
const dilations = [1].concat(attributes.dilations);
const kernelShape = [1].concat(attributes.kernelShape);
const adjustedAttributes = getAdjustedConvAttributes(
{ ...attributes, pads, strides, dilations, kernelShape },
inputs,
);
conv2d(context, inputs, adjustedAttributes, (outputShape) =>
isChannelLast ? [outputShape[0], outputShape[2], outputShape[3]] : [outputShape[0], outputShape[1], outputShape[3]],
);
};
const conv3d = (context: ComputeContext, inputs: readonly TensorView[], attributes: ConvAttributes): void => {
const format = attributes.format === 'NHWC' ? 'channelsLast' : 'channelsFirst';
const adjustedAttributes = getAdjustedConvAttributes(attributes, inputs);
const pads = attributes.autoPad === 'NOTSET' ? attributes.pads : attributes.autoPad;
const convInfo = computeConv3DInfo(
inputs[0].dims as [number, number, number, number, number],
inputs[1].dims as [number, number, number, number, number],
attributes.strides as number | [number, number, number],
attributes.dilations as number | [number, number, number],
pads as string | number[],
false,
format,
);
context.compute(
createConv3DNaiveProgramInfo(
inputs,
adjustedAttributes,
convInfo.outShape,
[convInfo.filterDepth, convInfo.filterHeight, convInfo.filterWidth],
[convInfo.padInfo.front, convInfo.padInfo.top, convInfo.padInfo.left],
format,
),
);
};
export const conv = (context: ComputeContext, attributes: ConvAttributes): void => {
validateInputs(context.inputs, attributes);
if (context.inputs[0].dims.length === 3) {
conv1d(context, attributes);
} else if (context.inputs[0].dims.length === 5) {
conv3d(context, context.inputs, attributes);
} else {
const adjustedAttributes = getAdjustedConvAttributes(attributes, context.inputs);
conv2d(context, context.inputs, adjustedAttributes);
}
};