UNPKG

onnxruntime-web

Version:

A Javascript library for running ONNX models on browsers

270 lines (246 loc) 11.5 kB
// Copyright (c) Microsoft Corporation. All rights reserved. // Licensed under the MIT License. import { DataType } from '../../../wasm-common'; import { TensorView } from '../../tensor-view'; import { ShapeUtil } from '../../util'; import { ProgramInfo, ProgramInputTensorInfoDependency, ProgramUniform } from '../types'; import { createTensorShapeVariables, getMaxComponents, inputVariable, outputVariable, ShaderHelper, tensorTypeToWsglStorageType, UniformsArrayType, } from './common'; import { ConvAttributes } from './conv'; import { appendActivationUniforms, appendActivationUniformsData, getActivationSnippet } from './fuse-utils'; /** * naive grouped conv implementation, supports 1d/2d conv * @param squeezeOutputShapeFunction - an optional function to squeeze the output shape, only used in conv1d */ export const createGroupedConvProgramInfo = ( inputs: readonly TensorView[], attributes: ConvAttributes, outputShape: readonly number[], squeezeOutputShapeFunction?: (shape: readonly number[]) => number[], ): ProgramInfo => { const hasBias = inputs.length > 2; const processBias = hasBias ? 'value += b[output_channel];' : ''; const xShape = inputs[0].dims; const wShape = inputs[1].dims; const isChannelLast = attributes.format === 'NHWC'; const outputChannels = isChannelLast ? outputShape[3] : outputShape[1]; const outputChannelsPerGroup = outputChannels / attributes.group; const components = isChannelLast && outputChannelsPerGroup >= 4 ? getMaxComponents(outputChannels) : 1; const outputSize = ShapeUtil.size(outputShape) / components; const programUniforms: ProgramUniform[] = [ { type: DataType.uint32, data: outputSize }, { type: DataType.uint32, data: attributes.dilations }, { type: DataType.uint32, data: [attributes.strides[0], attributes.strides[1]] }, { type: DataType.uint32, data: [attributes.pads[0], attributes.pads[1]] }, { type: DataType.uint32, data: outputChannelsPerGroup }, ]; appendActivationUniformsData(attributes, programUniforms); programUniforms.push( ...createTensorShapeVariables(xShape, [wShape[0], wShape[1], wShape[2], wShape[3] / components]), ); const inputDependencies: ProgramInputTensorInfoDependency[] = hasBias ? ['rank', 'rank', 'rank'] : ['rank', 'rank']; programUniforms.push( ...createTensorShapeVariables([outputShape[0], outputShape[1], outputShape[2], outputShape[3] / components]), ); const getShaderSource = (shaderHelper: ShaderHelper) => { const output = outputVariable('output', inputs[0].dataType, outputShape.length, components); const baseType = tensorTypeToWsglStorageType(output.type.tensor); const applyActivation = getActivationSnippet(attributes, output.type.value, baseType); const x = inputVariable('x', inputs[0].dataType, xShape.length); const w = inputVariable('w', inputs[1].dataType, wShape.length, components); const inputVars = [x, w]; if (hasBias) { inputVars.push(inputVariable('b', inputs[2].dataType, inputs[2].dims, components)); } const uniforms: UniformsArrayType = [ { name: 'output_size', type: 'u32' }, { name: 'dilations', type: 'u32', length: attributes.dilations.length }, { name: 'strides', type: 'u32', length: 2 }, { name: 'pads', type: 'u32', length: 2 }, { name: 'output_channels_per_group', type: 'u32' }, ]; appendActivationUniforms(attributes, uniforms); const calculateResult = isChannelLast ? ` for (var wHeight: u32 = 0u; wHeight < uniforms.w_shape[0]; wHeight++) { let xHeight = xRCCorner.x + wHeight * uniforms.dilations[0]; if (xHeight < 0u || xHeight >= uniforms.x_shape[1]) { continue; } for (var wWidth: u32 = 0u; wWidth < uniforms.w_shape[1]; wWidth++) { let xWidth = xRCCorner.y + wWidth * uniforms.dilations[1]; if (xWidth < 0u || xWidth >= uniforms.x_shape[2]) { continue; } for (var wInChannel: u32 = 0u; wInChannel < uniforms.w_shape[2]; wInChannel++) { let input_channel = in_channel_offset + wInChannel; let xVal = ${x.get('batch', 'xHeight', 'xWidth', 'input_channel')}; let wVal = ${w.get('wHeight', 'wWidth', 'wInChannel', 'output_channel')}; value += xVal * wVal; } } } ` : ` for (var wInChannel: u32 = 0u; wInChannel < uniforms.w_shape[1]; wInChannel++) { let input_channel = in_channel_offset + wInChannel; for (var wHeight: u32 = 0u; wHeight < uniforms.w_shape[2]; wHeight++) { let xHeight = xRCCorner.x + wHeight * uniforms.dilations[0]; if (xHeight < 0u || xHeight >= uniforms.x_shape[2]) { continue; } for (var wWidth: u32 = 0u; wWidth < uniforms.w_shape[3]; wWidth++) { let xWidth = xRCCorner.y + wWidth * uniforms.dilations[1]; if (xWidth < 0u || xWidth >= uniforms.x_shape[3]) { continue; } let xVal = ${x.get('batch', 'input_channel', 'xHeight', 'xWidth')}; let wVal = ${w.get('output_channel', 'wInChannel', 'wHeight', 'wWidth')}; value += xVal * wVal; } } } `; return ` ${shaderHelper.registerUniforms(uniforms).declareVariables(...inputVars, output)} ${shaderHelper.mainStart()} ${shaderHelper.guardAgainstOutOfBoundsWorkgroupSizes('uniforms.output_size')} let outputIndices = ${output.offsetToIndices('global_idx')}; let batch: u32 = outputIndices[0]; let output_channel: u32 = outputIndices[${isChannelLast ? 3 : 1}]; let xRCCorner: vec2<u32> = vec2<u32>(outputIndices[${isChannelLast ? 1 : 2}], outputIndices[${ isChannelLast ? 2 : 3 }]) * uniforms.strides - uniforms.pads; let group_id: u32 = output_channel * ${components} / uniforms.output_channels_per_group; var in_channel_offset = group_id * uniforms.w_shape[${isChannelLast ? 2 : 1}]; var value: ${output.type.value} = ${output.type.value}(0); ${calculateResult} ${processBias} ${applyActivation} ${output.setByOffset('global_idx', 'value')} }`; }; return { name: 'GroupedConv', shaderCache: { hint: `${attributes.cacheKey}_${components}`, inputDependencies }, getRunData: () => ({ outputs: [ { dims: squeezeOutputShapeFunction ? squeezeOutputShapeFunction(outputShape) : outputShape, dataType: inputs[0].dataType, }, ], dispatchGroup: { x: Math.ceil(outputSize / 64 /* workgroup size */) }, programUniforms, }), getShaderSource, }; }; export const createGroupedConvVectorizeProgramInfo = ( inputs: readonly TensorView[], attributes: ConvAttributes, outputShape: readonly number[], squeezeOutputShapeFunction?: (shape: readonly number[]) => number[], ): ProgramInfo => { const hasBias = inputs.length > 2; const components = getMaxComponents(outputShape[3]); const outputNumber = getMaxComponents(outputShape[2]); const outputSize = ShapeUtil.size(outputShape) / components / outputNumber; const xShape = [inputs[0].dims[0], inputs[0].dims[1], inputs[0].dims[2], inputs[0].dims[3] / components]; const wShape = [inputs[1].dims[0], inputs[1].dims[1], inputs[1].dims[2], inputs[1].dims[3] / components]; const outputShapeInShader = [outputShape[0], outputShape[1], outputShape[2], outputShape[3] / components]; const programUniforms: ProgramUniform[] = [ { type: DataType.uint32, data: outputSize }, { type: DataType.int32, data: [attributes.strides[0], attributes.strides[1]] }, { type: DataType.int32, data: [attributes.pads[0], attributes.pads[1]] }, ]; appendActivationUniformsData(attributes, programUniforms); programUniforms.push(...createTensorShapeVariables(xShape, wShape, outputShapeInShader)); const xNumber = (outputNumber - 1) * attributes.strides[1] + wShape[1]; const getShaderSource = (shaderHelper: ShaderHelper) => { const output = outputVariable('output', inputs[0].dataType, outputShapeInShader.length, components); const baseType = tensorTypeToWsglStorageType(output.type.tensor); const applyActivation = getActivationSnippet(attributes, output.type.value, baseType); const x = inputVariable('x', inputs[0].dataType, xShape.length, components); const w = inputVariable('w', inputs[1].dataType, wShape.length, components); const inputVars = [x, w]; if (hasBias) { inputVars.push(inputVariable('b', inputs[2].dataType, inputs[2].dims, components)); } const processBias = hasBias ? 'value += b[output_channel];' : ''; const uniforms: UniformsArrayType = [ { name: 'output_size', type: 'u32' }, { name: 'strides', type: 'i32', length: 2 }, { name: 'pads', type: 'i32', length: 2 }, ]; appendActivationUniforms(attributes, uniforms); return ` ${shaderHelper.registerUniforms(uniforms).declareVariables(...inputVars, output)} ${shaderHelper.mainStart()} ${shaderHelper.guardAgainstOutOfBoundsWorkgroupSizes('uniforms.output_size')} let width0 = uniforms.output_shape[3]; let output_channel = global_idx % width0; var index1 = global_idx / width0; let width1 = uniforms.output_shape[2] / ${outputNumber}u; let col = (index1 % width1) * ${outputNumber}u; index1 = index1 / width1; let row = index1 % uniforms.output_shape[1]; let batch = index1 / uniforms.output_shape[1]; let x_corner = vec2<i32>(i32(row), i32(col)) * uniforms.strides - uniforms.pads; var x_vals: array<${x.type.value}, ${xNumber}>; var values: array<${output.type.value}, ${outputNumber}>; let input_channel = output_channel; // Use constant instead of uniform can give better performance for w's height/width. for (var w_height: u32 = 0u; w_height < ${wShape[0]}; w_height++) { let x_height = x_corner.x + i32(w_height); if (x_height >= 0 && u32(x_height) < uniforms.x_shape[1]) { for (var i = 0; i < ${xNumber}; i++) { let x_width = x_corner.y + i; if (x_width >= 0 && u32(x_width) < uniforms.x_shape[2]) { x_vals[i] = ${x.get('batch', 'u32(x_height)', 'u32(x_width)', 'input_channel')}; } else { x_vals[i] = ${x.type.value}(0); } } for (var w_width: u32 = 0u; w_width < ${wShape[1]}; w_width++) { let w_val = ${w.get('w_height', 'w_width', '0', 'output_channel')}; for (var i = 0u; i < ${outputNumber}u; i++) { values[i] = fma(x_vals[i * u32(uniforms.strides[1]) + w_width], w_val, values[i]); } } } } for (var i = 0u; i < ${outputNumber}u; i++) { var value = values[i]; ${processBias} ${applyActivation} ${output.set('batch', 'row', 'col + i', 'output_channel', 'value')}; } }`; }; return { name: 'GroupedConv-Vectorize', shaderCache: { hint: `${attributes.cacheKey};${components};${outputNumber};${xNumber};${wShape[0]};${wShape[1]}`, inputDependencies: hasBias ? ['rank', 'rank', 'type'] : ['rank', 'rank'], }, getRunData: () => ({ outputs: [ { dims: squeezeOutputShapeFunction ? squeezeOutputShapeFunction(outputShape) : outputShape, dataType: inputs[0].dataType, }, ], dispatchGroup: { x: Math.ceil(outputSize / 64 /* workgroup size */) }, programUniforms, }), getShaderSource, }; };