onnxruntime-web
Version:
A Javascript library for running ONNX models on browsers
270 lines (246 loc) • 11.5 kB
text/typescript
// Copyright (c) Microsoft Corporation. All rights reserved.
// Licensed under the MIT License.
import { DataType } from '../../../wasm-common';
import { TensorView } from '../../tensor-view';
import { ShapeUtil } from '../../util';
import { ProgramInfo, ProgramInputTensorInfoDependency, ProgramUniform } from '../types';
import {
createTensorShapeVariables,
getMaxComponents,
inputVariable,
outputVariable,
ShaderHelper,
tensorTypeToWsglStorageType,
UniformsArrayType,
} from './common';
import { ConvAttributes } from './conv';
import { appendActivationUniforms, appendActivationUniformsData, getActivationSnippet } from './fuse-utils';
/**
* naive grouped conv implementation, supports 1d/2d conv
* @param squeezeOutputShapeFunction - an optional function to squeeze the output shape, only used in conv1d
*/
export const createGroupedConvProgramInfo = (
inputs: readonly TensorView[],
attributes: ConvAttributes,
outputShape: readonly number[],
squeezeOutputShapeFunction?: (shape: readonly number[]) => number[],
): ProgramInfo => {
const hasBias = inputs.length > 2;
const processBias = hasBias ? 'value += b[output_channel];' : '';
const xShape = inputs[0].dims;
const wShape = inputs[1].dims;
const isChannelLast = attributes.format === 'NHWC';
const outputChannels = isChannelLast ? outputShape[3] : outputShape[1];
const outputChannelsPerGroup = outputChannels / attributes.group;
const components = isChannelLast && outputChannelsPerGroup >= 4 ? getMaxComponents(outputChannels) : 1;
const outputSize = ShapeUtil.size(outputShape) / components;
const programUniforms: ProgramUniform[] = [
{ type: DataType.uint32, data: outputSize },
{ type: DataType.uint32, data: attributes.dilations },
{ type: DataType.uint32, data: [attributes.strides[0], attributes.strides[1]] },
{ type: DataType.uint32, data: [attributes.pads[0], attributes.pads[1]] },
{ type: DataType.uint32, data: outputChannelsPerGroup },
];
appendActivationUniformsData(attributes, programUniforms);
programUniforms.push(
...createTensorShapeVariables(xShape, [wShape[0], wShape[1], wShape[2], wShape[3] / components]),
);
const inputDependencies: ProgramInputTensorInfoDependency[] = hasBias ? ['rank', 'rank', 'rank'] : ['rank', 'rank'];
programUniforms.push(
...createTensorShapeVariables([outputShape[0], outputShape[1], outputShape[2], outputShape[3] / components]),
);
const getShaderSource = (shaderHelper: ShaderHelper) => {
const output = outputVariable('output', inputs[0].dataType, outputShape.length, components);
const baseType = tensorTypeToWsglStorageType(output.type.tensor);
const applyActivation = getActivationSnippet(attributes, output.type.value, baseType);
const x = inputVariable('x', inputs[0].dataType, xShape.length);
const w = inputVariable('w', inputs[1].dataType, wShape.length, components);
const inputVars = [x, w];
if (hasBias) {
inputVars.push(inputVariable('b', inputs[2].dataType, inputs[2].dims, components));
}
const uniforms: UniformsArrayType = [
{ name: 'output_size', type: 'u32' },
{ name: 'dilations', type: 'u32', length: attributes.dilations.length },
{ name: 'strides', type: 'u32', length: 2 },
{ name: 'pads', type: 'u32', length: 2 },
{ name: 'output_channels_per_group', type: 'u32' },
];
appendActivationUniforms(attributes, uniforms);
const calculateResult = isChannelLast
? `
for (var wHeight: u32 = 0u; wHeight < uniforms.w_shape[0]; wHeight++) {
let xHeight = xRCCorner.x + wHeight * uniforms.dilations[0];
if (xHeight < 0u || xHeight >= uniforms.x_shape[1]) {
continue;
}
for (var wWidth: u32 = 0u; wWidth < uniforms.w_shape[1]; wWidth++) {
let xWidth = xRCCorner.y + wWidth * uniforms.dilations[1];
if (xWidth < 0u || xWidth >= uniforms.x_shape[2]) {
continue;
}
for (var wInChannel: u32 = 0u; wInChannel < uniforms.w_shape[2]; wInChannel++) {
let input_channel = in_channel_offset + wInChannel;
let xVal = ${x.get('batch', 'xHeight', 'xWidth', 'input_channel')};
let wVal = ${w.get('wHeight', 'wWidth', 'wInChannel', 'output_channel')};
value += xVal * wVal;
}
}
}
`
: `
for (var wInChannel: u32 = 0u; wInChannel < uniforms.w_shape[1]; wInChannel++) {
let input_channel = in_channel_offset + wInChannel;
for (var wHeight: u32 = 0u; wHeight < uniforms.w_shape[2]; wHeight++) {
let xHeight = xRCCorner.x + wHeight * uniforms.dilations[0];
if (xHeight < 0u || xHeight >= uniforms.x_shape[2]) {
continue;
}
for (var wWidth: u32 = 0u; wWidth < uniforms.w_shape[3]; wWidth++) {
let xWidth = xRCCorner.y + wWidth * uniforms.dilations[1];
if (xWidth < 0u || xWidth >= uniforms.x_shape[3]) {
continue;
}
let xVal = ${x.get('batch', 'input_channel', 'xHeight', 'xWidth')};
let wVal = ${w.get('output_channel', 'wInChannel', 'wHeight', 'wWidth')};
value += xVal * wVal;
}
}
}
`;
return `
${shaderHelper.registerUniforms(uniforms).declareVariables(...inputVars, output)}
${shaderHelper.mainStart()}
${shaderHelper.guardAgainstOutOfBoundsWorkgroupSizes('uniforms.output_size')}
let outputIndices = ${output.offsetToIndices('global_idx')};
let batch: u32 = outputIndices[0];
let output_channel: u32 = outputIndices[${isChannelLast ? 3 : 1}];
let xRCCorner: vec2<u32> = vec2<u32>(outputIndices[${isChannelLast ? 1 : 2}], outputIndices[${
isChannelLast ? 2 : 3
}]) * uniforms.strides - uniforms.pads;
let group_id: u32 = output_channel * ${components} / uniforms.output_channels_per_group;
var in_channel_offset = group_id * uniforms.w_shape[${isChannelLast ? 2 : 1}];
var value: ${output.type.value} = ${output.type.value}(0);
${calculateResult}
${processBias}
${applyActivation}
${output.setByOffset('global_idx', 'value')}
}`;
};
return {
name: 'GroupedConv',
shaderCache: { hint: `${attributes.cacheKey}_${components}`, inputDependencies },
getRunData: () => ({
outputs: [
{
dims: squeezeOutputShapeFunction ? squeezeOutputShapeFunction(outputShape) : outputShape,
dataType: inputs[0].dataType,
},
],
dispatchGroup: { x: Math.ceil(outputSize / 64 /* workgroup size */) },
programUniforms,
}),
getShaderSource,
};
};
export const createGroupedConvVectorizeProgramInfo = (
inputs: readonly TensorView[],
attributes: ConvAttributes,
outputShape: readonly number[],
squeezeOutputShapeFunction?: (shape: readonly number[]) => number[],
): ProgramInfo => {
const hasBias = inputs.length > 2;
const components = getMaxComponents(outputShape[3]);
const outputNumber = getMaxComponents(outputShape[2]);
const outputSize = ShapeUtil.size(outputShape) / components / outputNumber;
const xShape = [inputs[0].dims[0], inputs[0].dims[1], inputs[0].dims[2], inputs[0].dims[3] / components];
const wShape = [inputs[1].dims[0], inputs[1].dims[1], inputs[1].dims[2], inputs[1].dims[3] / components];
const outputShapeInShader = [outputShape[0], outputShape[1], outputShape[2], outputShape[3] / components];
const programUniforms: ProgramUniform[] = [
{ type: DataType.uint32, data: outputSize },
{ type: DataType.int32, data: [attributes.strides[0], attributes.strides[1]] },
{ type: DataType.int32, data: [attributes.pads[0], attributes.pads[1]] },
];
appendActivationUniformsData(attributes, programUniforms);
programUniforms.push(...createTensorShapeVariables(xShape, wShape, outputShapeInShader));
const xNumber = (outputNumber - 1) * attributes.strides[1] + wShape[1];
const getShaderSource = (shaderHelper: ShaderHelper) => {
const output = outputVariable('output', inputs[0].dataType, outputShapeInShader.length, components);
const baseType = tensorTypeToWsglStorageType(output.type.tensor);
const applyActivation = getActivationSnippet(attributes, output.type.value, baseType);
const x = inputVariable('x', inputs[0].dataType, xShape.length, components);
const w = inputVariable('w', inputs[1].dataType, wShape.length, components);
const inputVars = [x, w];
if (hasBias) {
inputVars.push(inputVariable('b', inputs[2].dataType, inputs[2].dims, components));
}
const processBias = hasBias ? 'value += b[output_channel];' : '';
const uniforms: UniformsArrayType = [
{ name: 'output_size', type: 'u32' },
{ name: 'strides', type: 'i32', length: 2 },
{ name: 'pads', type: 'i32', length: 2 },
];
appendActivationUniforms(attributes, uniforms);
return `
${shaderHelper.registerUniforms(uniforms).declareVariables(...inputVars, output)}
${shaderHelper.mainStart()}
${shaderHelper.guardAgainstOutOfBoundsWorkgroupSizes('uniforms.output_size')}
let width0 = uniforms.output_shape[3];
let output_channel = global_idx % width0;
var index1 = global_idx / width0;
let width1 = uniforms.output_shape[2] / ${outputNumber}u;
let col = (index1 % width1) * ${outputNumber}u;
index1 = index1 / width1;
let row = index1 % uniforms.output_shape[1];
let batch = index1 / uniforms.output_shape[1];
let x_corner = vec2<i32>(i32(row), i32(col)) * uniforms.strides - uniforms.pads;
var x_vals: array<${x.type.value}, ${xNumber}>;
var values: array<${output.type.value}, ${outputNumber}>;
let input_channel = output_channel;
// Use constant instead of uniform can give better performance for w's height/width.
for (var w_height: u32 = 0u; w_height < ${wShape[0]}; w_height++) {
let x_height = x_corner.x + i32(w_height);
if (x_height >= 0 && u32(x_height) < uniforms.x_shape[1]) {
for (var i = 0; i < ${xNumber}; i++) {
let x_width = x_corner.y + i;
if (x_width >= 0 && u32(x_width) < uniforms.x_shape[2]) {
x_vals[i] = ${x.get('batch', 'u32(x_height)', 'u32(x_width)', 'input_channel')};
} else {
x_vals[i] = ${x.type.value}(0);
}
}
for (var w_width: u32 = 0u; w_width < ${wShape[1]}; w_width++) {
let w_val = ${w.get('w_height', 'w_width', '0', 'output_channel')};
for (var i = 0u; i < ${outputNumber}u; i++) {
values[i] = fma(x_vals[i * u32(uniforms.strides[1]) + w_width], w_val, values[i]);
}
}
}
}
for (var i = 0u; i < ${outputNumber}u; i++) {
var value = values[i];
${processBias}
${applyActivation}
${output.set('batch', 'row', 'col + i', 'output_channel', 'value')};
}
}`;
};
return {
name: 'GroupedConv-Vectorize',
shaderCache: {
hint: `${attributes.cacheKey};${components};${outputNumber};${xNumber};${wShape[0]};${wShape[1]}`,
inputDependencies: hasBias ? ['rank', 'rank', 'type'] : ['rank', 'rank'],
},
getRunData: () => ({
outputs: [
{
dims: squeezeOutputShapeFunction ? squeezeOutputShapeFunction(outputShape) : outputShape,
dataType: inputs[0].dataType,
},
],
dispatchGroup: { x: Math.ceil(outputSize / 64 /* workgroup size */) },
programUniforms,
}),
getShaderSource,
};
};