onnxruntime-web
Version:
A Javascript library for running ONNX models on browsers
342 lines (316 loc) • 11.4 kB
text/typescript
// Copyright (c) Microsoft Corporation. All rights reserved.
// Licensed under the MIT License.
import { DataType } from '../../../wasm-common';
import { TensorView } from '../../tensor-view';
import { BroadcastUtil, ShapeUtil } from '../../util';
import { ComputeContext, ProgramInfo } from '../types';
import { createTensorShapeVariables, inputVariable, outputVariable, ShaderHelper } from './common';
type BuiltinFunctionName = string;
type BinaryCustomExpression = (expressionA: string, expressionB: string) => string;
type BinaryFunctionCall =
| BuiltinFunctionName
| BinaryCustomExpression
| {
scalar: BinaryCustomExpression;
vector: BinaryCustomExpression;
};
const createBinaryOpProgramShader = (
shaderHelper: ShaderHelper,
dimsA: readonly number[],
dimsB: readonly number[],
dimsOutput: readonly number[],
vectorize: boolean,
doBroadcast: boolean,
sharedDimensionDivisibleBy4: boolean,
funcCall: BinaryFunctionCall,
typeA: number,
typeB: number,
typeOutput: number,
additionalImplementation?: string,
) => {
let expressionScalar: BinaryCustomExpression;
let expressionVector: BinaryCustomExpression;
if (typeof funcCall === 'string') {
expressionScalar = expressionVector = (a, b) => `${funcCall}((${a}),(${b}))`;
} else if (typeof funcCall === 'function') {
expressionScalar = expressionVector = funcCall;
} else {
expressionScalar = funcCall.scalar;
expressionVector = funcCall.vector;
}
const output = outputVariable('outputData', typeOutput, dimsOutput.length, 4);
const a = inputVariable('aData', typeA, dimsA.length, 4);
const b = inputVariable('bData', typeB, dimsB.length, 4);
let assignment: string;
if (vectorize) {
if (doBroadcast) {
const isAOneElement = ShapeUtil.size(dimsA) === 1;
const isBOneElement = ShapeUtil.size(dimsB) === 1;
const aLastDimDivisibleBy4 = dimsA.length > 0 && dimsA[dimsA.length - 1] % 4 === 0;
const bLastDimDivisibleBy4 = dimsB.length > 0 && dimsB[dimsB.length - 1] % 4 === 0;
if (isAOneElement || isBOneElement) {
assignment = output.setByOffset(
'global_idx',
expressionVector(
isAOneElement ? `${a.type.value}(${a.getByOffset('0')}.x)` : a.getByOffset('global_idx'),
isBOneElement ? `${b.type.value}(${b.getByOffset('0')}.x)` : b.getByOffset('global_idx'),
),
);
} else {
assignment = `
let outputIndices = ${output.offsetToIndices('global_idx * 4u')};
let offsetA = ${a.broadcastedIndicesToOffset('outputIndices', output)};
let offsetB = ${b.broadcastedIndicesToOffset('outputIndices', output)};
${output.setByOffset(
'global_idx',
expressionVector(
sharedDimensionDivisibleBy4 || aLastDimDivisibleBy4
? a.getByOffset('offsetA / 4u')
: `${a.type.value}(${a.getByOffset('offsetA / 4u')}[offsetA % 4u])`,
sharedDimensionDivisibleBy4 || bLastDimDivisibleBy4
? b.getByOffset('offsetB / 4u')
: `${b.type.value}(${b.getByOffset('offsetB / 4u')}[offsetB % 4u])`,
),
)}
`;
}
} else {
assignment = output.setByOffset(
'global_idx',
expressionVector(a.getByOffset('global_idx'), b.getByOffset('global_idx')),
);
}
} else {
if (!doBroadcast) {
throw new Error('no necessary to use scalar implementation for element-wise binary op implementation.');
}
const singleAssignment = (resStr: string, x: number, typeCast = '') => {
const expressionA = `aData[indexA${x}][componentA${x}]`;
const expressionB = `bData[indexB${x}][componentB${x}]`;
return `
let outputIndices${x} = ${output.offsetToIndices(`global_idx * 4u + ${x}u`)};
let offsetA${x} = ${a.broadcastedIndicesToOffset(`outputIndices${x}`, output)};
let offsetB${x} = ${b.broadcastedIndicesToOffset(`outputIndices${x}`, output)};
let indexA${x} = offsetA${x} / 4u;
let indexB${x} = offsetB${x} / 4u;
let componentA${x} = offsetA${x} % 4u;
let componentB${x} = offsetB${x} % 4u;
${resStr}[${x}] = ${typeCast}(${expressionScalar(expressionA, expressionB)});
`;
};
if (typeOutput === DataType.bool) {
assignment = `
var data = vec4<u32>(0);
${singleAssignment('data', 0, 'u32')}
${singleAssignment('data', 1, 'u32')}
${singleAssignment('data', 2, 'u32')}
${singleAssignment('data', 3, 'u32')}
outputData[global_idx] = dot(vec4<u32>(0x1, 0x100, 0x10000, 0x1000000), vec4<u32>(data));`;
} else {
assignment = `
${singleAssignment('outputData[global_idx]', 0)}
${singleAssignment('outputData[global_idx]', 1)}
${singleAssignment('outputData[global_idx]', 2)}
${singleAssignment('outputData[global_idx]', 3)}
`;
}
}
return `
${shaderHelper.registerUniform('vec_size', 'u32').declareVariables(a, b, output)}
${additionalImplementation ?? ''}
${shaderHelper.mainStart()}
${shaderHelper.guardAgainstOutOfBoundsWorkgroupSizes('uniforms.vec_size')}
${assignment}
}`;
};
const createBinaryOpProgramInfo = (
name: string,
cacheKey: string,
a: TensorView,
b: TensorView,
funcCall: BinaryFunctionCall,
additionalImplementation?: string,
outputDataType: number = a.dataType,
): ProgramInfo => {
const aDims = a.dims.map((x) => Number(x) ?? 1);
const bDims = b.dims.map((x) => Number(x) ?? 1);
const isBroadcast = !ShapeUtil.areEqual(aDims, bDims);
let outputShape = aDims;
let outputSize = ShapeUtil.size(aDims);
let vectorize = false;
let sharedDimensionDivisibleBy4 = false;
// TODO: deal with zero-sized tensors (eg. dims=[1,0])
const cacheKeyAux = [isBroadcast];
if (isBroadcast) {
const calculatedShape = BroadcastUtil.calcShape(aDims, bDims, false);
if (!calculatedShape) {
throw new Error("Can't perform binary op on the given tensors");
}
outputShape = calculatedShape.slice();
outputSize = ShapeUtil.size(outputShape);
const isAOneElement = ShapeUtil.size(aDims) === 1;
const isBOneElement = ShapeUtil.size(bDims) === 1;
const aLastDimDivisibleBy4 = aDims.length > 0 && aDims[aDims.length - 1] % 4 === 0;
const bLastDimDivisibleBy4 = bDims.length > 0 && bDims[bDims.length - 1] % 4 === 0;
cacheKeyAux.push(isAOneElement);
cacheKeyAux.push(isBOneElement);
cacheKeyAux.push(aLastDimDivisibleBy4);
cacheKeyAux.push(bLastDimDivisibleBy4);
// check whether vectorize can be enabled
let sharedDimension = 1;
for (let i = 1; i < outputShape.length; i++) {
const dimA = aDims[aDims.length - i];
const dimB = bDims[bDims.length - i];
if (dimA === dimB) {
sharedDimension *= dimA;
} else {
break;
}
}
if (sharedDimension % 4 === 0) {
sharedDimensionDivisibleBy4 = true;
vectorize = true;
} else if (isAOneElement || isBOneElement || aLastDimDivisibleBy4 || bLastDimDivisibleBy4) {
vectorize = true;
}
} else {
// element-wise
vectorize = true;
}
cacheKeyAux.push(vectorize);
return {
name,
shaderCache: {
hint: cacheKey + cacheKeyAux.map((x) => x.toString()).join('_'),
inputDependencies: ['rank', 'rank'],
},
getShaderSource: (shaderHelper) =>
createBinaryOpProgramShader(
shaderHelper,
aDims,
bDims,
outputShape,
vectorize,
isBroadcast,
sharedDimensionDivisibleBy4,
funcCall,
a.dataType,
b.dataType,
outputDataType,
additionalImplementation,
),
getRunData: () => ({
outputs: [{ dims: outputShape, dataType: outputDataType }],
dispatchGroup: { x: Math.ceil(outputSize / 64 /* workgroup size */ / 4 /* component size */) },
programUniforms: [
{ type: DataType.uint32, data: Math.ceil(ShapeUtil.size(outputShape) / 4) },
...createTensorShapeVariables(aDims, bDims, outputShape),
],
}),
};
};
const runBinaryOp = (
context: ComputeContext,
name: string,
funcCall: BinaryFunctionCall,
additionalImplementation?: string,
cacheKey?: string,
outputDataType?: number,
): void => {
context.compute(
createBinaryOpProgramInfo(
name,
cacheKey ?? '',
context.inputs[0],
context.inputs[1],
funcCall,
additionalImplementation,
outputDataType,
),
);
};
export const add = (context: ComputeContext): void => {
runBinaryOp(context, 'Add', (a, b) => `${a}+${b}`);
};
export const div = (context: ComputeContext): void => {
runBinaryOp(context, 'Div', (a, b) => `${a}/${b}`);
};
export const equal = (context: ComputeContext): void => {
runBinaryOp(
context,
'Equal',
{ scalar: (a, b) => `u32(${a}==${b})`, vector: (a, b) => `vec4<u32>(${a}==${b})` },
undefined,
undefined,
DataType.bool,
);
};
export const mul = (context: ComputeContext): void => {
runBinaryOp(context, 'Mul', (a, b) => `${a}*${b}`);
};
export const pow = (context: ComputeContext): void => {
const type = inputVariable('input', context.inputs[0].dataType, context.inputs[0].dims).type.value;
const roundStr = type === 'i32' ? 'round' : '';
runBinaryOp(
context,
'Pow',
{ scalar: (a, b) => `pow_custom(${a},${b})`, vector: (a, b) => `pow_vector_custom(${a},${b})` },
`
fn pow_custom(a : ${type}, b : ${type}) -> ${type} {
if (b == ${type}(0.0)) {
return ${type}(1.0);
} else if (a < ${type}(0.0) && f32(b) != floor(f32(b))) {
return ${type}(pow(f32(a), f32(b))); // NaN
}
return select(sign(a), ${type}(1.0), round(f32(abs(b) % ${type}(2.0))) != 1.0) * ${type}(${roundStr}(pow(f32(abs(a)), f32(b))));
}
fn pow_vector_custom(a : vec4<${type}>, b : vec4<${type}>) -> vec4<${type}> {
// TODO: implement vectorized pow
return vec4<${type}>(pow_custom(a.x, b.x), pow_custom(a.y, b.y), pow_custom(a.z, b.z), pow_custom(a.w, b.w));
}
`,
);
};
export const sub = (context: ComputeContext): void => {
runBinaryOp(context, 'Sub', (a, b) => `${a}-${b}`);
};
export const greater = (context: ComputeContext): void => {
runBinaryOp(
context,
'Greater',
{ scalar: (a, b) => `u32(${a}>${b})`, vector: (a, b) => `vec4<u32>(${a}>${b})` },
undefined,
undefined,
DataType.bool,
);
};
export const less = (context: ComputeContext): void => {
runBinaryOp(
context,
'Less',
{ scalar: (a, b) => `u32(${a}<${b})`, vector: (a, b) => `vec4<u32>(${a}<${b})` },
undefined,
undefined,
DataType.bool,
);
};
export const greaterOrEqual = (context: ComputeContext): void => {
runBinaryOp(
context,
'GreaterOrEqual',
{ scalar: (a, b) => `u32(${a}>=${b})`, vector: (a, b) => `vec4<u32>(${a}>=${b})` },
undefined,
undefined,
DataType.bool,
);
};
export const lessOrEqual = (context: ComputeContext): void => {
runBinaryOp(
context,
'LessOrEqual',
{ scalar: (a, b) => `u32(${a}<=${b})`, vector: (a, b) => `vec4<u32>(${a}<=${b})` },
undefined,
undefined,
DataType.bool,
);
};