onnxruntime-web
Version:
A Javascript library for running ONNX models on browsers
154 lines (143 loc) • 6.7 kB
text/typescript
// Copyright (c) Microsoft Corporation. All rights reserved.
// Licensed under the MIT License.
import { env } from 'onnxruntime-common';
import { DataType } from '../../../wasm-common';
import { TensorView } from '../../tensor-view';
import { ShapeUtil } from '../../util';
import { AttributeWithCacheKey, createAttributeWithCacheKey } from '../attribute-with-cache-key';
import { ComputeContext, ProgramInfo } from '../types';
import { createTensorShapeVariables, getMaxComponents, inputVariable, outputVariable, ShaderHelper } from './common';
export interface BatchNormAttributes extends AttributeWithCacheKey {
readonly epsilon: number;
readonly momentum: number;
readonly spatial: boolean;
readonly trainingMode: boolean;
readonly format: 'NHWC' | 'NCHW';
readonly outputCount: number;
}
const validateInputs = (inputs: readonly TensorView[], attributes: BatchNormAttributes): void => {
if (!inputs || inputs.length !== 5) {
throw new Error('BatchNormalization requires 5 inputs');
}
const checkShapeEqual = (actual: readonly number[], expected: readonly number[], message: string) => {
const r = expected.length;
if (r !== actual.length) {
throw new Error(`${message}: num dimensions != ${r}`);
}
expected.forEach((v, i) => {
if (v !== actual[i]) {
throw new Error(`${message}: dim[${i}] do not match`);
}
});
};
if (inputs[0].dims.length > 1) {
const shape =
attributes.format === 'NHWC'
? attributes.spatial
? inputs[0].dims.slice(-1)
: inputs[0].dims.slice(-1).concat(inputs[0].dims.slice(1, inputs[0].dims.length - 1))
: inputs[0].dims.slice(1, attributes.spatial ? 2 : undefined);
checkShapeEqual(inputs[1].dims, shape, 'Invalid input scale');
checkShapeEqual(inputs[2].dims, shape, 'Invalid input B');
checkShapeEqual(inputs[3].dims, shape, 'Invalid input mean');
checkShapeEqual(inputs[4].dims, shape, 'Invalid input var');
} else {
checkShapeEqual(inputs[1].dims, [1], 'Invalid input scale');
checkShapeEqual(inputs[2].dims, [1], 'Invalid input B');
checkShapeEqual(inputs[3].dims, [1], 'Invalid input mean');
checkShapeEqual(inputs[4].dims, [1], 'Invalid input var');
}
};
const createBatchNormInferenceProgramInfo = (
inputs: readonly TensorView[],
attributes: BatchNormAttributes,
): ProgramInfo => {
const { epsilon, spatial, format } = attributes;
const yShape = inputs[0].dims;
const components = spatial ? getMaxComponents(yShape[yShape.length - 1]) : 1;
const cComponents = format === 'NHWC' && yShape.length > 1 ? components : 1;
const outputSize = ShapeUtil.size(yShape) / components;
// Only support uniforms for opset version >= 9 (spatial = true).
const useShapesUniforms = spatial;
const shapeOrRank = useShapesUniforms ? yShape.length : yShape;
const x = inputVariable('x', inputs[0].dataType, inputs[0].dims, components);
const scale = inputVariable('scale', inputs[1].dataType, inputs[1].dims, cComponents);
const bias = inputVariable('bias', inputs[2].dataType, inputs[2].dims, cComponents);
const inputMean = inputVariable('inputMean', inputs[3].dataType, inputs[3].dims, cComponents);
const inputVar = inputVariable('inputVar', inputs[4].dataType, inputs[4].dims, cComponents);
const y = outputVariable('y', inputs[0].dataType, shapeOrRank, components);
// TODO: support inputs with different data type. Current we need to make sure all inputs have the same data type.
// Otherwise, the shader compilation will fail.
const calcCOffset = (): string => {
let cOffset = '';
if (spatial) {
cOffset = `let cOffset = ${
yShape.length === 1
? '0u'
: format === 'NHWC'
? `outputIndices[${yShape.length - 1}] / ${components}`
: 'outputIndices[1]'
};`;
} else {
if (format === 'NCHW') {
cOffset = `
${y.indicesSet('outputIndices', '0', '0')}
let cOffset = ${y.indicesToOffset('outputIndices')};`;
} else {
// update C channel.
cOffset = `var cIndices = ${scale.type.indices}(0);
cIndices[0] = outputIndices[${yShape.length - 1}];`;
// update D1 x ... x Dn channels.
for (let i = 1; i < scale.rank; i++) {
cOffset += `cIndices[${i}] = outputIndices[${i}];`;
}
cOffset += `let cOffset = ${scale.indicesToOffset('cIndices')};`;
}
}
return cOffset;
};
const getInferenceModeShaderSource = (helper: ShaderHelper) => `
const epsilon = ${epsilon};
${helper.registerUniform('outputSize', 'u32').declareVariables(x, scale, bias, inputMean, inputVar, y)}
${helper.mainStart()}
${helper.guardAgainstOutOfBoundsWorkgroupSizes('uniforms.outputSize')}
var outputIndices = ${y.offsetToIndices(`global_idx * ${components}`)};
${calcCOffset()}
let scale = ${scale.getByOffset('cOffset')};
let bias = ${bias.getByOffset('cOffset')};
let inputMean = ${inputMean.getByOffset('cOffset')};
let inputVar = ${inputVar.getByOffset('cOffset')};
let x = ${x.getByOffset('global_idx')};
let value = (x - inputMean) * inverseSqrt(inputVar + epsilon) * scale + bias;
${y.setByOffset('global_idx', 'value')}
}`;
return {
name: 'BatchNormalization',
shaderCache: {
hint: `${attributes.epsilon}_${attributes.format}_${spatial}_${components}`,
inputDependencies: useShapesUniforms ? ['rank', 'type', 'type', 'type', 'type'] : undefined,
},
getShaderSource: getInferenceModeShaderSource,
getRunData: () => ({
outputs: [{ dims: inputs[0].dims, dataType: inputs[0].dataType }],
dispatchGroup: { x: Math.ceil(outputSize / 64 /* workgroup size */) },
programUniforms: useShapesUniforms
? [{ type: DataType.uint32, data: outputSize }, ...createTensorShapeVariables(yShape)]
: [{ type: DataType.uint32, data: outputSize }],
}),
};
};
export const parseBatchNormAttributes = (attributes: Record<string, unknown>): BatchNormAttributes =>
createAttributeWithCacheKey(attributes as Omit<BatchNormAttributes, keyof AttributeWithCacheKey>);
export const batchNorm = (context: ComputeContext, attributes: Record<string, unknown>): void => {
const { inputs, outputCount } = context;
const updatedAttributes = parseBatchNormAttributes({ ...attributes, outputCount });
if (env.webgpu.validateInputContent) {
validateInputs(inputs, updatedAttributes);
}
if (attributes.trainingMode) {
throw new Error('BatchNormalization trainingMode is not supported yet.');
} else {
context.compute(createBatchNormInferenceProgramInfo(inputs, updatedAttributes));
}
};