onnxruntime-web
Version:
A Javascript library for running ONNX models on browsers
1,025 lines (957 loc) • 39.9 kB
text/typescript
// Copyright (c) Microsoft Corporation. All rights reserved.
// Licensed under the MIT License.
import { DataType } from '../../../wasm-common';
import { TensorView } from '../../tensor-view';
import { ShapeUtil } from '../../util';
import { ComputeContext, GpuDataType, ProgramInputTensorInfoDependency, ProgramUniform } from '../types';
import {
getMaxComponents,
IndicesHelper,
inputVariable,
outputVariable,
ShaderHelper,
tensorTypeToWsglStorageType,
tensorTypeToWsglValueType,
UniformDataElementType,
UniformsArrayType,
} from './common';
export const enum AttentionQkvFormat {
unknown, // enum value not set, or depends on qkv projection implementation details
qkvBNSH, // for non-packed qkv, permuted
qkvBSNH, // for non-packed qkv, not permuted, used by memory efficient attention or MultiHeadAttention
qkvBSN3H, // for TRT fused attention, qkv are packed
qkvBNSHqkvBS3NH, // for TRT fused causal attention, data has two formats (qkv is 3BNSH, gemm_buffer is BS3NH)
qKvBSNHxBSN2H, // for TRT fused cross attention, kv are packed
qkvTNH, // for memory efficient attention, qkv are not packed, and paddings are removed.
qkvTN3H, // for TRT fused attention, qkv are packed and paddings are removed
}
export const enum AttentionMaskType {
none, // No mask
mask1dKeySeqLen, // [batch_size], key sequence length
mask1dEndStart, // [2 * batch_size] with end positions and start positions
mask1DKeySeqLenStart, // [3 * batch_size + 2] with [key_len[0], ..., key_len[batch_size - 1], query_start[0],
// ..., query_start[batch_size - 1], query_end[batch_size - 1], key_start[0], ...,
// key_start[batch_size - 1], key_end[batch_size - 1]]
mask2dDummy, // dummy mask with shape [1, 1] or [batch_size, 1]. It has same effect as no mask.
mask2dKeyPadding, // [batch_size, total_sequence_length]
mask3dAttention, // [batch_size, sequence_length, total_sequence_length]
mask4dMegatron, // Megatron causal mask with shape [batch_size, 1, max_sequence_length, max_sequence_length]
maskUnknown,
}
export interface AttentionParameters {
batchSize: number;
sequenceLength: number;
pastSequenceLength: number;
kvSequenceLength: number;
totalSequenceLength: number;
maxSequenceLength: number;
inputHiddenSize: number;
hiddenSize: number;
vHiddenSize: number;
headSize: number;
vHeadSize: number;
numHeads: number;
kvNumHeads?: number;
nReps?: number;
isUnidirectional?: boolean;
pastPresentShareBuffer: boolean;
maskFilterValue?: number;
maskType: AttentionMaskType;
scale: number;
broadcastResPosBias: boolean;
passPastInKv: boolean;
qkvFormat: AttentionQkvFormat;
softcap?: number;
doRotary?: number;
rotaryInterLeaved?: number;
sommoothSoftmax?: number;
localWindowsSize?: number;
}
export interface AttentionAttrs {
numHeads: number;
isUnidirectional: number;
maskFilterValue: number;
scale: number;
doRotary: number;
qkvHiddenSizes: number[];
pastPresentShareBuffer: boolean;
}
const validateAttentionInputs = (inputs: readonly TensorView[], attributes: AttentionAttrs): AttentionParameters => {
// Abbreviation and Meanings:
// B: batch_size
// S: sequence_length (input sequence length of query)
// P: past_sequence_length (past sequence length of key or value)
// L: kv_sequence_length (input sequence length of key or value)
// M: max_sequence_length
// T: total_sequence_length = past_sequence_length + kv_sequence_length
// N: num_heads
// H: head size for Q and K, aka q_head_size or k_head_size or qk_head_size
// H_v: v_head_size
// D_i: input hidden size
// D: hidden size for Q and K (D = N * H), aka q_hidden_size or k_hidden_size or qk_hidden_size
// D_v: v_hidden_size = num_heads * v_head_size
// When past state is used, Q, K and V should have same hidden size (unless we split it into past_key and past_value).
// Input shapes:
// input (Q/K/V) : (B, S, D_i)
// weights (Q/K/V) : (D_i, D + D + D_v)
// bias (Q/K/V) : (D + D + D_v)
// mask_index : see below
// past (K/V) : (2, B, N, P, H) or NULL
// attention_bias : (B, N, S, T) or NULL
// For mask_index, the following shapes are supported:
// NULL, (B, 1), (1, 1)
// (B), (2 * B), (3 * B + 2)
// (B, T)
// (B, S, T)
// (B, 1, M, M)
//
// When a model is pruned (like some attention heads are removed in Q/K/V), input_hidden_size could be larger
// than hidden dimension of Q, K and V.
const input = inputs[0];
const weights = inputs[1];
const bias = inputs[2];
const maskIndex = inputs[3];
const past = inputs[4];
const attentionBias = inputs[5];
if (past && attentionBias) {
throw new Error('Attention cannot have both past and attention_bias');
}
if (input.dims.length !== 3) {
throw new Error('Input "input" must have 3 dimensions');
}
const batchSize = input.dims[0];
const sequenceLength = input.dims[1];
const inputHiddenSize = input.dims[2];
if (bias.dims.length !== 1) {
throw new Error('Input "bias" is expected to have 1 dimensions');
}
if (weights.dims.length !== 2) {
throw new Error('Input "weights" is expected to have 2 dimensions');
}
if (weights.dims[0] !== inputHiddenSize) {
throw new Error('Input 1 dimension 0 should have same length as dimension 2 of input 0');
}
if (bias.dims[0] !== weights.dims[1]) {
throw new Error('Input "bias" dimension 0 should have same length as dimension 1 of input "weights"');
}
let qHiddenSize = bias.dims[0] / 3;
let kHiddenSize = qHiddenSize;
let vHiddenSize = kHiddenSize;
if (attributes.qkvHiddenSizes.length > 0) {
if (attributes.qkvHiddenSizes.length !== 3) {
throw new Error('qkv_hidden_sizes attribute should have 3 elements');
}
for (const sz of attributes.qkvHiddenSizes) {
if (sz % attributes.numHeads !== 0) {
throw new Error('qkv_hidden_sizes should be divisible by num_heads');
}
}
qHiddenSize = attributes.qkvHiddenSizes[0];
kHiddenSize = attributes.qkvHiddenSizes[1];
vHiddenSize = attributes.qkvHiddenSizes[2];
}
const kvSequenceLength = sequenceLength;
if (qHiddenSize !== kHiddenSize) {
throw new Error('qkv_hidden_sizes first element should be same as the second');
}
if (bias.dims[0] !== qHiddenSize + kHiddenSize + vHiddenSize) {
throw new Error('Input "bias" dimension 0 should have same length as sum of Q/K/V hidden sizes');
}
let pastSequenceLength = 0;
if (past) {
if (kHiddenSize !== vHiddenSize) {
throw new Error('Input "past" expect k_hidden_size == v_hidden_size');
}
if (past.dims.length !== 5) {
throw new Error('Input "past" must have 5 dimensions');
}
if (past.dims[0] !== 2) {
throw new Error('Input "past" first dimension must be 2');
}
if (past.dims[1] !== batchSize) {
throw new Error('Input "past" second dimension must be batch_size');
}
if (past.dims[2] !== attributes.numHeads) {
throw new Error('Input "past" third dimension must be num_heads');
}
if (past.dims[4] !== kHiddenSize / attributes.numHeads) {
throw new Error('Input "past" fifth dimension must be k_hidden_size / num_heads');
}
if (!attributes.pastPresentShareBuffer) {
pastSequenceLength = past.dims[3];
}
// TODO: handle past_seq_len
}
const totalSequenceLength = kvSequenceLength + pastSequenceLength;
const maxSequenceLength = -1;
const maskType = AttentionMaskType.none;
if (maskIndex) {
// maskType = AttentionMaskType.MASK_UNKNOWN;
// TODO: handle mask
throw new Error('Mask not supported');
}
if (past) {
throw new Error('past is not supported');
}
if (attentionBias) {
if (attentionBias.dims.length !== 4) {
throw new Error('Input "attention_bias" must have 4 dimensions');
}
// TODO: support broadcasting the first and second dimensions of attention_bias
if (
attentionBias.dims[0] !== batchSize ||
attentionBias.dims[1] !== attributes.numHeads ||
attentionBias.dims[2] !== sequenceLength ||
attentionBias.dims[3] !== totalSequenceLength
) {
throw new Error('Expect "attention_bias" shape (batch_size, num_heads, sequence_length, total_sequence_length)');
}
}
return {
batchSize,
sequenceLength,
pastSequenceLength,
kvSequenceLength,
totalSequenceLength,
maxSequenceLength,
inputHiddenSize,
hiddenSize: qHiddenSize,
vHiddenSize,
headSize: Math.floor(qHiddenSize / attributes.numHeads),
vHeadSize: Math.floor(vHiddenSize / attributes.numHeads),
numHeads: attributes.numHeads,
isUnidirectional: false,
pastPresentShareBuffer: false,
maskFilterValue: attributes.maskFilterValue,
maskType,
scale: attributes.scale,
broadcastResPosBias: false,
passPastInKv: false,
qkvFormat: AttentionQkvFormat.qkvBNSH,
};
};
const initVarStub = (
seqLensInput: IndicesHelper | undefined,
totalSequenceLengthInput: IndicesHelper | undefined,
initPastSequenceLength: boolean,
) => {
// In the case of GQA, redefine total_sequence_length, present_sequence_length and past_sequence_length based on seqlen_k input
if (totalSequenceLengthInput && seqLensInput) {
return `
let total_sequence_length_input = u32(${totalSequenceLengthInput.getByOffset('0')});
let present_sequence_length = max(total_sequence_length_input, uniforms.past_sequence_length);
let is_subsequent_prompt: bool = sequence_length > 1 && sequence_length != total_sequence_length_input;
let is_first_prompt: bool = is_subsequent_prompt == false && sequence_length == total_sequence_length_input;
total_sequence_length = u32(${seqLensInput?.getByOffset('batchIdx')}) + 1;
var past_sequence_length: u32 = 0;
if (is_first_prompt == false) {
past_sequence_length = total_sequence_length - sequence_length;
}
`;
} else {
return `
${initPastSequenceLength ? 'let past_sequence_length = uniforms.past_sequence_length' : ''};
let present_sequence_length = total_sequence_length;
`;
}
};
const createInPlaceSoftmaxProgramInfo = (
input: TensorView,
batchSize: number,
numHeads: number,
pastSequenceLength: number,
sequenceLength: number,
totalSequenceLength: number,
seqLens: TensorView | undefined,
totalSequenceLengthInput: TensorView | undefined,
) => {
// Set components to 1 if seqLens is specified, i.e. GroupQueryAttention.
const components = getMaxComponents(seqLens ? 1 : totalSequenceLength);
let WG = 64;
const totalSequenceLengthComp = totalSequenceLength / components;
if (totalSequenceLengthComp < WG) {
WG = 32;
}
const elementsPerThread = Math.ceil(totalSequenceLength / components / WG);
const programUniforms: ProgramUniform[] = [
{ type: DataType.uint32, data: batchSize },
{ type: DataType.uint32, data: numHeads },
{ type: DataType.uint32, data: pastSequenceLength },
{ type: DataType.uint32, data: sequenceLength },
{ type: DataType.uint32, data: totalSequenceLengthComp },
{ type: DataType.uint32, data: elementsPerThread },
];
const dataType = tensorTypeToWsglStorageType(input.dataType, components);
const f32Type = tensorTypeToWsglValueType(DataType.float, components);
const inputDependencies: ProgramInputTensorInfoDependency[] = ['type'];
if (seqLens) {
inputDependencies.push('type');
}
if (totalSequenceLengthInput) {
inputDependencies.push('type');
}
const getShaderSource = (shaderHelper: ShaderHelper) => {
const inputHelper = outputVariable('x', input.dataType, input.dims, components);
const inputHelpers = [inputHelper];
const seqLensInputHelper = seqLens ? inputVariable('seq_lens', seqLens.dataType, seqLens.dims) : undefined;
if (seqLensInputHelper) {
inputHelpers.push(seqLensInputHelper);
}
const totalSequenceLengthInputHelper = totalSequenceLengthInput
? inputVariable('total_sequence_length_input', totalSequenceLengthInput.dataType, totalSequenceLengthInput.dims)
: undefined;
if (totalSequenceLengthInputHelper) {
inputHelpers.push(totalSequenceLengthInputHelper);
}
const elemValueType = tensorTypeToWsglValueType(input.dataType);
const uniforms: UniformsArrayType = [
{ name: 'batch_size', type: 'u32' },
{ name: 'num_heads', type: 'u32' },
{ name: 'past_sequence_length', type: 'u32' },
{ name: 'sequence_length', type: 'u32' },
{ name: 'total_sequence_length', type: 'u32' },
{ name: 'elements_per_thread', type: 'u32' },
];
return `
var<workgroup> thread_max: array<f32, ${WG}>;
var<workgroup> thread_sum: array<f32, ${WG}>;
${shaderHelper.registerUniforms(uniforms).declareVariables(...inputHelpers)}
${shaderHelper.mainStart([WG, 1, 1])}
let batchIdx = workgroup_id.z / uniforms.num_heads;
let headIdx = workgroup_id.z % uniforms.num_heads;
let sequence_length = uniforms.sequence_length;
var total_sequence_length = uniforms.total_sequence_length;
${initVarStub(seqLensInputHelper, totalSequenceLengthInputHelper, false)}
let local_offset = local_idx * uniforms.elements_per_thread;
let offset = (global_idx / ${WG}) * uniforms.total_sequence_length + local_offset;
let seq_causal_length = ${seqLens ? 'u32(past_sequence_length + workgroup_id.y + 1)' : 'total_sequence_length'};
var thread_max_vector = ${f32Type}(-3.402823e+38f);
for (var i: u32 = 0; i < uniforms.elements_per_thread && i + local_offset < seq_causal_length; i++) {
thread_max_vector = max(${f32Type}(x[offset + i]), thread_max_vector);
}
thread_max[local_idx] = ${(() => {
switch (components) {
case 1:
return 'thread_max_vector';
case 2:
return 'max(thread_max_vector.x, thread_max_vector.y)';
case 4:
return 'max(max(thread_max_vector.x, thread_max_vector.y), max(thread_max_vector.z, thread_max_vector.w))';
default:
throw new Error(`Unsupported components: ${components}`);
}
})()};
workgroupBarrier();
var max_value = f32(-3.402823e+38f);
for (var i = 0u; i < ${WG}; i++) {
max_value = max(thread_max[i], max_value);
}
var sum_vector = ${f32Type}(0);
for (var i: u32 = 0; i < uniforms.elements_per_thread && i + local_offset < seq_causal_length; i++) {
sum_vector += exp(${f32Type}(x[offset + i]) - max_value);
}
thread_sum[local_idx] = ${(() => {
switch (components) {
case 1:
return 'sum_vector';
case 2:
return 'sum_vector.x + sum_vector.y';
case 4:
return 'sum_vector.x + sum_vector.y + sum_vector.z + sum_vector.w';
default:
throw new Error(`Unsupported components: ${components}`);
}
})()};
workgroupBarrier();
var sum: f32 = 0;
for (var i = 0u; i < ${WG}; i++) {
sum += thread_sum[i];
}
if (sum == 0) {
for (var i: u32 = 0; i < uniforms.elements_per_thread && i + local_offset < seq_causal_length; i++) {
x[offset + i] = ${inputHelper.type.value}(${elemValueType}(1.0) / ${elemValueType}(seq_causal_length));
}
} else {
for (var i: u32 = 0; i < uniforms.elements_per_thread && i + local_offset < seq_causal_length; i++) {
var f32input = ${f32Type}(x[offset + i]);
x[offset + i] = ${inputHelper.type.value}(exp(f32input - max_value) / sum);
}
}
${
seqLens
? `
for (var total_seq_id: u32 = seq_causal_length; total_seq_id + local_offset < uniforms.total_sequence_length; total_seq_id++) {
x[offset + total_seq_id] = ${inputHelper.type.value}(${elemValueType}(0));
}`
: ''
};
}`;
};
return {
name: 'AttentionProbsSoftmax',
shaderCache: { hint: `${WG};${dataType};${components}`, inputDependencies },
getShaderSource,
getRunData: () => ({
outputs: [],
dispatchGroup: { x: 1, y: sequenceLength, z: batchSize * numHeads },
programUniforms,
}),
};
};
const createAttentionProbsProgramInfo = (
outputCount: number,
q: TensorView,
key: TensorView,
pastKey: TensorView | undefined,
attentionBias: TensorView | undefined,
parameters: AttentionParameters,
pastSequenceLength: number,
seqLens: TensorView | undefined,
totalSequenceLengthInput: TensorView | undefined,
) => {
const totalSequenceLength = pastSequenceLength + parameters.kvSequenceLength;
const probsShape = [parameters.batchSize, parameters.numHeads, parameters.sequenceLength, totalSequenceLength];
const presentKey = outputCount > 1 && pastKey;
const kvNumHeads = parameters.kvNumHeads ? parameters.kvNumHeads : parameters.numHeads;
const presentKeyShape = presentKey
? [parameters.batchSize, kvNumHeads, totalSequenceLength, parameters.headSize]
: undefined;
const nReps = parameters.nReps ? parameters.nReps : 1;
// TODO: handle mask
const alpha = parameters.scale === 0 ? 1.0 / Math.sqrt(parameters.headSize) : parameters.scale;
const components = getMaxComponents(parameters.headSize);
const vectorizedHeadSize = parameters.headSize / components;
const TILE_SIZE = 12;
const dispatch = {
x: Math.ceil(totalSequenceLength / TILE_SIZE),
y: Math.ceil(parameters.sequenceLength / TILE_SIZE),
z: parameters.batchSize * parameters.numHeads,
};
const programUniforms: ProgramUniform[] = [
{ type: DataType.uint32, data: parameters.sequenceLength },
{ type: DataType.uint32, data: vectorizedHeadSize },
{ type: DataType.uint32, data: totalSequenceLength },
{ type: DataType.uint32, data: parameters.numHeads },
{ type: DataType.uint32, data: parameters.headSize },
{ type: DataType.float, data: alpha },
{ type: DataType.uint32, data: pastSequenceLength },
{ type: DataType.uint32, data: parameters.kvSequenceLength },
{ type: DataType.uint32, data: nReps },
];
// Feed pastKey to the shader-code only if it is non-zero and presentKey is being produced
const feedPastKey = presentKey && pastKey && ShapeUtil.size(pastKey.dims) > 0;
const inputDependencies: ProgramInputTensorInfoDependency[] = ['type', 'type'];
if (feedPastKey) {
inputDependencies.push('type');
}
if (attentionBias) {
inputDependencies.push('type');
}
if (seqLens) {
inputDependencies.push('type');
}
if (totalSequenceLengthInput) {
inputDependencies.push('type');
}
const outputs = [{ dims: probsShape, dataType: q.dataType, gpuDataType: GpuDataType.default }];
if (presentKey) {
outputs.push({ dims: presentKeyShape!, dataType: q.dataType, gpuDataType: GpuDataType.default });
}
const getShaderSource = (shaderHelper: ShaderHelper) => {
const qInput = inputVariable('q', q.dataType, q.dims, components);
const kInput = inputVariable('key', key.dataType, key.dims, components);
const inputVars = [qInput, kInput];
if (feedPastKey) {
const pastKeyInput = inputVariable('past_key', pastKey.dataType, pastKey.dims, components);
inputVars.push(pastKeyInput);
}
if (attentionBias) {
inputVars.push(inputVariable('attention_bias', attentionBias.dataType, attentionBias.dims));
}
const seqLensInputVariable = seqLens ? inputVariable('seq_lens', seqLens.dataType, seqLens.dims) : undefined;
if (seqLensInputVariable) {
inputVars.push(seqLensInputVariable);
}
const totalSequenceLengthInputVariable = totalSequenceLengthInput
? inputVariable('total_sequence_length_input', totalSequenceLengthInput.dataType, totalSequenceLengthInput.dims)
: undefined;
if (totalSequenceLengthInputVariable) {
inputVars.push(totalSequenceLengthInputVariable);
}
const output = outputVariable('output', q.dataType, probsShape);
const outputVars = [output];
if (presentKey) {
outputVars.push(outputVariable('present_key', q.dataType, presentKeyShape!, components));
}
const f32Type = tensorTypeToWsglValueType(DataType.float, components);
const uniforms: UniformsArrayType = [
{ name: 'M', type: 'u32' },
{ name: 'K', type: 'u32' },
{ name: 'N', type: 'u32' },
{ name: 'num_heads', type: 'u32' },
{ name: 'head_size', type: 'u32' },
{ name: 'alpha', type: 'f32' as UniformDataElementType },
{ name: 'past_sequence_length', type: 'u32' },
{ name: 'kv_sequence_length', type: 'u32' },
{ name: 'n_reps', type: 'u32' },
];
return `
const TILE_SIZE = ${TILE_SIZE}u;
var<workgroup> tileQ: array<${qInput.type.storage}, ${TILE_SIZE * TILE_SIZE}>;
var<workgroup> tileK: array<${qInput.type.storage}, ${TILE_SIZE * TILE_SIZE}>;
${shaderHelper.registerUniforms(uniforms).declareVariables(...inputVars, ...outputVars)}
${shaderHelper.mainStart([TILE_SIZE, TILE_SIZE, 1])}
// x holds the N and y holds the M
let headIdx = workgroup_id.z % uniforms.num_heads;
let kvHeadIdx = ${nReps === 1 ? 'headIdx' : 'headIdx / uniforms.n_reps'};
let kv_num_heads = ${nReps === 1 ? 'uniforms.num_heads' : 'uniforms.num_heads / uniforms.n_reps'};
let batchIdx = workgroup_id.z / uniforms.num_heads;
let m = workgroup_id.y * TILE_SIZE;
let n = workgroup_id.x * TILE_SIZE;
let sequence_length = uniforms.M;
var total_sequence_length = uniforms.N;
${initVarStub(seqLensInputVariable, totalSequenceLengthInputVariable, true)}
let absKvHeadIdx = batchIdx * kv_num_heads + kvHeadIdx;
let qOffset = workgroup_id.z * uniforms.M * uniforms.K + m * uniforms.K;
${feedPastKey && presentKey ? 'let pastKeyOffset = absKvHeadIdx * uniforms.past_sequence_length * uniforms.K;' : ''};
let kOffset = absKvHeadIdx * uniforms.kv_sequence_length * uniforms.K;
${presentKey ? 'let presentKeyOffset = absKvHeadIdx * uniforms.N * uniforms.K;' : ''}
var value = ${f32Type}(0);
for (var w: u32 = 0u; w < uniforms.K; w += TILE_SIZE) {
if (global_id.y < uniforms.M && w + local_id.x < uniforms.K) {
tileQ[TILE_SIZE * local_id.y + local_id.x] = q[qOffset + local_id.y * uniforms.K + w + local_id.x];
}
if (n + local_id.y < uniforms.N && w + local_id.x < uniforms.K) {
var idx = TILE_SIZE * local_id.y + local_id.x;
${(() => {
if (feedPastKey && presentKey) {
return `
if (n + local_id.y < past_sequence_length) {
tileK[idx] = past_key[pastKeyOffset + (n + local_id.y) * uniforms.K + w + local_id.x];
} else if (n + local_id.y - past_sequence_length < uniforms.kv_sequence_length) {
tileK[idx] = key[kOffset + (n + local_id.y - past_sequence_length) * uniforms.K + w + local_id.x];
}`;
} else {
return `
if (n + local_id.y < uniforms.kv_sequence_length) {
tileK[idx] = key[kOffset + (n + local_id.y) * uniforms.K + w + local_id.x];
}`;
}
})()}
${
presentKey
? `if (n + local_id.y < present_sequence_length) {
present_key[presentKeyOffset + (n + local_id.y) * uniforms.K + w + local_id.x] = tileK[idx];
}`
: ''
}
}
workgroupBarrier();
for (var k: u32 = 0u; k < TILE_SIZE && w+k < uniforms.K; k++) {
value += ${f32Type}(tileQ[TILE_SIZE * local_id.y + k] * tileK[TILE_SIZE * local_id.x + k]);
}
workgroupBarrier();
}
if (global_id.y < uniforms.M && global_id.x < total_sequence_length) {
let headOffset = workgroup_id.z * uniforms.M * uniforms.N;
let outputIdx = headOffset + global_id.y * uniforms.N + global_id.x;
var sum: f32 = ${(() => {
switch (components) {
case 1:
return 'value';
case 2:
return 'value.x + value.y';
case 4:
return 'value.x + value.y + value.z + value.w';
default:
throw new Error(`Unsupported components: ${components}`);
}
})()};
output[outputIdx] = ${output.type.value} (sum * uniforms.alpha) + ${
attentionBias ? 'attention_bias[outputIdx]' : '0.0'
};
}
}`;
};
return {
name: 'AttentionProbs',
shaderCache: {
hint: `${components};${attentionBias !== undefined};${pastKey !== undefined};${outputCount}`,
inputDependencies,
},
getRunData: () => ({ outputs, dispatchGroup: dispatch, programUniforms }),
getShaderSource,
};
};
const createVxAttentionScoreProgramInfo = (
outputCount: number,
probs: TensorView,
v: TensorView,
pastValue: TensorView | undefined,
params: AttentionParameters,
pastSequenceLength: number,
seqLens: TensorView | undefined = undefined,
totalSequenceLengthInput: TensorView | undefined = undefined,
) => {
const totalSequenceLength = pastSequenceLength + params.kvSequenceLength;
const nReps = params.nReps ? params.nReps : 1;
const repeatedVHiddenSize = params.vHiddenSize * nReps;
const presentValue = outputCount > 1 && pastValue;
const kvNumHeads = params.kvNumHeads ? params.kvNumHeads : params.numHeads;
const presentValueShape = presentValue
? [params.batchSize, kvNumHeads, totalSequenceLength, params.headSize]
: undefined;
const outputShape = [params.batchSize, params.sequenceLength, repeatedVHiddenSize];
const TILE_SIZE = 12;
const dispatch = {
x: Math.ceil(params.vHeadSize / TILE_SIZE),
y: Math.ceil(params.sequenceLength / TILE_SIZE),
z: params.batchSize * params.numHeads,
};
const programUniforms: ProgramUniform[] = [
{ type: DataType.uint32, data: params.sequenceLength },
{ type: DataType.uint32, data: totalSequenceLength },
{ type: DataType.uint32, data: params.vHeadSize },
{ type: DataType.uint32, data: params.numHeads },
{ type: DataType.uint32, data: params.headSize },
{ type: DataType.uint32, data: repeatedVHiddenSize },
{ type: DataType.uint32, data: pastSequenceLength },
{ type: DataType.uint32, data: params.kvSequenceLength },
{ type: DataType.uint32, data: nReps },
];
// Feed pastValue to the shader-code only if it is non-empty and presentValue is being produced
const feedPastValue = presentValue && pastValue && ShapeUtil.size(pastValue.dims) > 0;
const inputDependencies: ProgramInputTensorInfoDependency[] = ['type', 'type'];
if (feedPastValue) {
inputDependencies.push('type');
}
if (seqLens) {
inputDependencies.push('type');
}
if (totalSequenceLengthInput) {
inputDependencies.push('type');
}
const outputs = [{ dims: outputShape, dataType: probs.dataType, gpuDataType: GpuDataType.default }];
if (presentValue) {
outputs.push({ dims: presentValueShape!, dataType: probs.dataType, gpuDataType: GpuDataType.default });
}
const getShaderSource = (shaderHelper: ShaderHelper) => {
const probsHelper = inputVariable('probs', probs.dataType, probs.dims);
const vHelper = inputVariable('v', v.dataType, v.dims);
const inputVars = [probsHelper, vHelper];
if (feedPastValue) {
inputVars.push(inputVariable('past_value', pastValue.dataType, pastValue.dims));
}
const seqLensInputVariable = seqLens ? inputVariable('seq_lens', seqLens.dataType, seqLens.dims) : undefined;
if (seqLens) {
inputVars.push(seqLensInputVariable!);
}
const totalSequenceLengthInputVariable = totalSequenceLengthInput
? inputVariable('total_sequence_length_input', totalSequenceLengthInput.dataType, totalSequenceLengthInput.dims)
: undefined;
if (totalSequenceLengthInput) {
inputVars.push(totalSequenceLengthInputVariable!);
}
const output = outputVariable('output', probs.dataType, outputShape);
const outputVars = [output];
if (presentValue) {
outputVars.push(outputVariable('present_value', probs.dataType, presentValueShape!));
}
const uniforms: UniformsArrayType = [
{ name: 'M', type: 'u32' },
{ name: 'K', type: 'u32' },
{ name: 'N', type: 'u32' },
{ name: 'num_heads', type: 'u32' },
{ name: 'head_size', type: 'u32' },
{ name: 'v_hidden_size', type: 'u32' },
{ name: 'past_sequence_length', type: 'u32' },
{ name: 'kv_sequence_length', type: 'u32' },
{ name: 'n_reps', type: 'u32' },
];
return `
const TILE_SIZE = ${TILE_SIZE}u;
var<workgroup> tileQ: array<${probsHelper.type.value}, ${TILE_SIZE * TILE_SIZE}>;
var<workgroup> tileV: array<${probsHelper.type.value}, ${TILE_SIZE * TILE_SIZE}>;
${shaderHelper.registerUniforms(uniforms).declareVariables(...inputVars, ...outputVars)}
${shaderHelper.mainStart([TILE_SIZE, TILE_SIZE, 1])}
let headIdx = workgroup_id.z % uniforms.num_heads;
let batchIdx = workgroup_id.z / uniforms.num_heads;
let kvHeadIdx = ${nReps === 1 ? 'headIdx' : 'headIdx / uniforms.n_reps'};
let kv_num_heads = ${nReps === 1 ? 'uniforms.num_heads' : 'uniforms.num_heads / uniforms.n_reps'};
let m = global_id.y;
let n = global_id.x;
let sequence_length = uniforms.M;
var total_sequence_length = uniforms.K;
${initVarStub(seqLensInputVariable, totalSequenceLengthInputVariable, true)}
let offsetA = workgroup_id.z * uniforms.M * uniforms.K + m * uniforms.K;
let absKvHeadIdx = batchIdx * kv_num_heads + kvHeadIdx; // kvHeadIdx is relative to the batch
${feedPastValue && presentValue ? 'let pastValueOffset = absKvHeadIdx * uniforms.N * uniforms.past_sequence_length + n;' : ''};
let vOffset = absKvHeadIdx * uniforms.N * uniforms.kv_sequence_length + n;
${presentValue ? 'let presentValueOffset = absKvHeadIdx * uniforms.N * uniforms.K + n;' : ''}
var value = ${probsHelper.type.storage}(0);
for (var w: u32 = 0u; w < uniforms.K; w += TILE_SIZE) {
if (m < uniforms.M && w + local_id.x < uniforms.K) {
tileQ[TILE_SIZE * local_id.y + local_id.x] = probs[offsetA + w + local_id.x];
}
if (n < uniforms.N && w + local_id.y < uniforms.K) {
var idx = TILE_SIZE * local_id.y + local_id.x;
${(() => {
if (feedPastValue && presentValue) {
return `
if (w + local_id.y < past_sequence_length) {
tileV[idx] = past_value[pastValueOffset + (w + local_id.y) * uniforms.N];
} else if (w + local_id.y - past_sequence_length < uniforms.kv_sequence_length) {
tileV[idx] = v[vOffset + (w + local_id.y - past_sequence_length) * uniforms.N];
}
`;
} else {
return `
if (w + local_id.y < uniforms.kv_sequence_length) {
tileV[idx] = v[vOffset + (w + local_id.y) * uniforms.N];
}`;
}
})()}
${
presentValue
? `
if (w + local_id.y < present_sequence_length) {
present_value[presentValueOffset + (w + local_id.y) * uniforms.N] = tileV[idx];
}`
: ''
}
}
workgroupBarrier();
for (var k: u32 = 0u; k < TILE_SIZE && w+k < total_sequence_length; k++) {
value += tileQ[TILE_SIZE * local_id.y + k] * tileV[TILE_SIZE * k + local_id.x];
}
workgroupBarrier();
}
// we need to transpose output from BNSH_v to BSND_v
if (m < uniforms.M && n < uniforms.N) {
let outputIdx = batchIdx * uniforms.M * uniforms.v_hidden_size + m * uniforms.v_hidden_size
+ headIdx * uniforms.N + n;
output[outputIdx] = value;
}
}`;
};
return {
name: 'AttentionScore',
shaderCache: { hint: `${pastValue !== undefined};${outputCount}`, inputDependencies },
getRunData: () => ({ outputs, dispatchGroup: dispatch, programUniforms }),
getShaderSource,
};
};
export const applyAttention = (
context: ComputeContext,
q: TensorView,
k: TensorView,
v: TensorView,
_maskIndex: TensorView | undefined,
_past: TensorView | undefined,
pastKey: TensorView | undefined,
pastValue: TensorView | undefined,
attentionBiasInput: TensorView | undefined,
parameters: AttentionParameters,
seqLens: TensorView | undefined = undefined,
totalSequenceLengthInput: TensorView | undefined = undefined,
) => {
// Assumption is that presentKey/presentValue exists only if pastKey/pastValue exists.
const outputCount = Math.min(context.outputCount, 1 + (pastKey ? 1 : 0) + (pastValue ? 1 : 0));
const pastSequenceLength = outputCount > 1 ? parameters.pastSequenceLength : 0;
const totalSequenceLength = pastSequenceLength + parameters.kvSequenceLength;
const attentionBias =
attentionBiasInput && ShapeUtil.size(attentionBiasInput.dims) > 0 ? attentionBiasInput : undefined;
const inputsK = [q, k];
if (outputCount > 1 && pastKey && ShapeUtil.size(pastKey.dims) > 0) {
inputsK.push(pastKey);
}
if (attentionBias) {
inputsK.push(attentionBias);
}
if (seqLens) {
inputsK.push(seqLens);
}
if (totalSequenceLengthInput) {
inputsK.push(totalSequenceLengthInput);
}
// Run AttentionProbs
const probs = context.compute(
createAttentionProbsProgramInfo(
outputCount,
q,
k,
pastKey,
attentionBias,
parameters,
pastSequenceLength,
seqLens,
totalSequenceLengthInput,
),
{ inputs: inputsK, outputs: outputCount > 1 ? [-1, 1] : [-1] },
)[0];
// Run Softmax
context.compute(
createInPlaceSoftmaxProgramInfo(
probs,
parameters.batchSize,
parameters.numHeads,
pastSequenceLength,
parameters.sequenceLength,
totalSequenceLength,
seqLens,
totalSequenceLengthInput,
),
{ inputs: seqLens && totalSequenceLengthInput ? [probs, seqLens, totalSequenceLengthInput] : [probs], outputs: [] },
);
// Run AttentionScore
const inputsV = [probs, v];
if (outputCount > 1 && pastValue && ShapeUtil.size(pastValue.dims) > 0) {
inputsV.push(pastValue);
}
if (seqLens) {
inputsV.push(seqLens);
}
if (totalSequenceLengthInput) {
inputsV.push(totalSequenceLengthInput);
}
context.compute(
createVxAttentionScoreProgramInfo(
outputCount,
probs,
v,
pastValue,
parameters,
pastSequenceLength,
seqLens,
totalSequenceLengthInput,
),
{
inputs: inputsV,
outputs: outputCount > 1 ? [0, 2] : [0],
},
);
};
const prepare = (context: ComputeContext, parameters: AttentionParameters) => {
const outputShape = [parameters.batchSize, parameters.numHeads, parameters.sequenceLength, parameters.headSize];
const M = parameters.sequenceLength;
const K = parameters.inputHiddenSize;
const N = parameters.headSize;
const TILE_SIZE = 12;
const dispatch = {
x: Math.ceil(parameters.headSize / TILE_SIZE),
y: Math.ceil(parameters.sequenceLength / TILE_SIZE),
z: parameters.batchSize * parameters.numHeads,
};
const inputs = [context.inputs[0], context.inputs[1], context.inputs[2]];
const programUniforms: ProgramUniform[] = [
{ type: DataType.uint32, data: M },
{ type: DataType.uint32, data: K },
{ type: DataType.uint32, data: N },
{ type: DataType.uint32, data: parameters.numHeads },
{ type: DataType.uint32, data: parameters.headSize },
{ type: DataType.uint32, data: parameters.hiddenSize },
{ type: DataType.uint32, data: parameters.hiddenSize + parameters.hiddenSize + parameters.vHiddenSize },
];
const getShaderSource = (shaderHelper: ShaderHelper) => {
const outputQ = outputVariable('output_q', inputs[0].dataType, outputShape);
const outputK = outputVariable('output_k', inputs[0].dataType, outputShape);
const outputV = outputVariable('output_v', inputs[0].dataType, outputShape);
const input = inputVariable('input', inputs[0].dataType, inputs[0].dims);
const weight = inputVariable('weight', inputs[1].dataType, inputs[1].dims);
const bias = inputVariable('bias', inputs[2].dataType, inputs[2].dims);
const dataType = input.type.storage;
const uniforms: UniformsArrayType = [
{ name: 'M', type: 'u32' },
{ name: 'K', type: 'u32' },
{ name: 'N', type: 'u32' },
{ name: 'num_heads', type: 'u32' },
{ name: 'head_size', type: 'u32' },
{ name: 'hidden_size', type: 'u32' },
{ name: 'ldb', type: 'u32' },
];
return `
const TILE_SIZE = ${TILE_SIZE}u;
var<workgroup> tileInput: array<${dataType}, ${TILE_SIZE * TILE_SIZE}>;
var<workgroup> tileWeightQ: array<${dataType}, ${TILE_SIZE * TILE_SIZE}>;
var<workgroup> tileWeightK: array<${dataType}, ${TILE_SIZE * TILE_SIZE}>;
var<workgroup> tileWeightV: array<${dataType}, ${TILE_SIZE * TILE_SIZE}>;
${shaderHelper.registerUniforms(uniforms).declareVariables(input, weight, bias, outputQ, outputK, outputV)}
${shaderHelper.mainStart([TILE_SIZE, TILE_SIZE, 1])}
let batchIndex = workgroup_id.z / uniforms.num_heads;
let headNumber = workgroup_id.z % uniforms.num_heads;
let m = global_id.y;
let n = global_id.x;
let inputOffset = batchIndex * (uniforms.M * uniforms.K) + m * uniforms.K;
let biasOffsetQ = headNumber * uniforms.head_size;
let biasOffsetK = uniforms.hidden_size + biasOffsetQ;
let biasOffsetV = uniforms.hidden_size + biasOffsetK;
var valueQ = ${dataType}(0);
var valueK = ${dataType}(0);
var valueV = ${dataType}(0);
for (var w: u32 = 0u; w < uniforms.K; w += TILE_SIZE) {
if (m < uniforms.M && w + local_id.x < uniforms.K) {
tileInput[TILE_SIZE * local_id.y + local_id.x] = input[inputOffset + w + local_id.x];
}
if (n < uniforms.N && w + local_id.y < uniforms.K) {
let offset = n + (w + local_id.y) * uniforms.ldb;
tileWeightQ[TILE_SIZE * local_id.y + local_id.x] = weight[biasOffsetQ + offset];
tileWeightK[TILE_SIZE * local_id.y + local_id.x] = weight[biasOffsetK + offset];
tileWeightV[TILE_SIZE * local_id.y + local_id.x] = weight[biasOffsetV + offset];
}
workgroupBarrier();
for (var k: u32 = 0u; k<TILE_SIZE && w+k < uniforms.K; k++) {
let inputTileOffset = TILE_SIZE * local_id.y + k;
let weightTileOffset = TILE_SIZE * k + local_id.x;
valueQ += tileInput[inputTileOffset] * tileWeightQ[weightTileOffset];
valueK += tileInput[inputTileOffset] * tileWeightK[weightTileOffset];
valueV += tileInput[inputTileOffset] * tileWeightV[weightTileOffset];
}
workgroupBarrier();
}
let headOffset = (m * uniforms.N + n) % uniforms.head_size;
valueQ += bias[headOffset + biasOffsetQ];
valueK += bias[headOffset + biasOffsetK];
valueV += bias[headOffset + biasOffsetV];
let offset = workgroup_id.z * uniforms.M * uniforms.N;
if (m < uniforms.M && n < uniforms.N) {
let outputIdx = offset + m * uniforms.N + n;
output_q[outputIdx] = valueQ;
output_k[outputIdx] = valueK;
output_v[outputIdx] = valueV;
}
}`;
};
return context.compute(
{
name: 'AttentionPrepare',
shaderCache: { inputDependencies: ['type', 'type', 'type'] },
getRunData: () => ({
outputs: [
{ dims: outputShape, dataType: context.inputs[0].dataType, gpuDataType: GpuDataType.default },
{ dims: outputShape, dataType: context.inputs[0].dataType, gpuDataType: GpuDataType.default },
{ dims: outputShape, dataType: context.inputs[0].dataType, gpuDataType: GpuDataType.default },
],
dispatchGroup: dispatch,
programUniforms,
}),
getShaderSource,
},
{ inputs, outputs: [-1, -1, -1] },
);
};
export const attention = (context: ComputeContext, attributes: AttentionAttrs): void => {
const params = validateAttentionInputs(context.inputs, attributes);
const [q, k, v] = prepare(context, params);
return applyAttention(
context,
q,
k,
v,
context.inputs[4],
undefined,
undefined,
undefined,
context.inputs[5],
params,
);
};