onnxruntime-web
Version:
A Javascript library for running ONNX models on browsers
48 lines (39 loc) • 1.56 kB
text/typescript
// Copyright (c) Microsoft Corporation. All rights reserved.
// Licensed under the MIT License.
import { Graph } from '../../../graph';
import { OperatorImplementation, OperatorInitialization } from '../../../operators';
import { Tensor } from '../../../tensor';
import { ShapeUtil } from '../../../util';
import { WebGLInferenceHandler } from '../inference-handler';
export const squeeze: OperatorImplementation<number[]> = (
inferenceHandler: WebGLInferenceHandler,
inputs: Tensor[],
axes: number[],
): Tensor[] => {
validateInputs(inputs);
const outputShape = ShapeUtil.squeezeShape(inputs[0].dims, axes);
const output = inferenceHandler.reshapeUnpacked(inputs[0], outputShape);
return [output];
};
export const squeezeV13 = (inferenceHandler: WebGLInferenceHandler, inputs: Tensor[]): Tensor[] => {
validateInputsV13(inputs);
return squeeze(inferenceHandler, [inputs[0]], Array.from(inputs[1].integerData));
};
export const parseSqueezeAttributes: OperatorInitialization<number[]> = (node: Graph.Node): number[] =>
node.attributes.getInts('axes');
const validateInputs = (inputs: Tensor[]): void => {
if (!inputs || inputs.length !== 1) {
throw new Error('Squeeze requires 1 input.');
}
if (inputs[0].type === 'string') {
throw new Error('invalid input tensor types.');
}
};
const validateInputsV13 = (inputs: Tensor[]): void => {
if (!inputs || inputs.length !== 2) {
throw new Error('Squeeze requires 2 inputs.');
}
if (inputs[1].type !== 'int32') {
throw new Error('Invalid input type.');
}
};