onnxruntime-web
Version:
A Javascript library for running ONNX models on browsers
155 lines (139 loc) • 5.41 kB
text/typescript
// Copyright (c) Microsoft Corporation. All rights reserved.
// Licensed under the MIT License.
import { AttributeWithCacheKey, createAttributeWithCacheKey } from '../../../attribute-with-cache-key';
import { Graph } from '../../../graph';
import { NUMBER_TYPES, OperatorImplementation, OperatorInitialization } from '../../../operators';
import { Tensor } from '../../../tensor';
import { ShapeUtil } from '../../../util';
import { WebGLInferenceHandler } from '../inference-handler';
import { ProgramInfo, TextureType } from '../types';
export interface SliceAttributes extends AttributeWithCacheKey {
readonly axes: number[];
readonly ends: number[];
readonly starts: number[];
}
const sliceProgramMetadata = {
name: 'Slice',
inputNames: ['A'],
inputTypes: [TextureType.unpacked],
};
export const slice: OperatorImplementation<SliceAttributes> = (
inferenceHandler: WebGLInferenceHandler,
inputs: Tensor[],
attributes: SliceAttributes,
): Tensor[] => {
validateInputs(inputs);
const output = inferenceHandler.run(
{
...sliceProgramMetadata,
cacheHint: attributes.cacheKey,
get: () => createSliceProgramInfo(inferenceHandler, inputs[0], attributes),
},
inputs,
);
return [output];
};
export const parseSliceAttributes: OperatorInitialization<SliceAttributes> = (node: Graph.Node): SliceAttributes => {
const starts = node.attributes.getInts('starts');
const ends = node.attributes.getInts('ends');
const axes = node.attributes.getInts('axes', []);
return createAttributeWithCacheKey({ starts, ends, axes });
};
const createSliceProgramInfo = (
_inferenceHandler: WebGLInferenceHandler,
input: Tensor,
attributes: SliceAttributes,
): ProgramInfo => {
const axes = attributes.axes.length === 0 ? input.dims.slice(0).map((_val, i) => i) : attributes.axes;
const normalizedAxes = ShapeUtil.normalizeAxes(axes, input.dims.length);
const starts = attributes.starts.map((start, i) => {
if (start > input.dims[normalizedAxes[i]] - 1) {
return input.dims[normalizedAxes[i]];
}
return ShapeUtil.normalizeAxis(start, input.dims[normalizedAxes[i]]);
});
const ends = attributes.ends.map((end, i) => {
if (end > input.dims[normalizedAxes[i]] - 1) {
return input.dims[normalizedAxes[i]];
}
return ShapeUtil.normalizeAxis(end, input.dims[normalizedAxes[i]]);
});
const outputShape = input.dims.slice();
const sliceOps: string[] = [];
for (let i = 0; i < normalizedAxes.length; i++) {
outputShape[normalizedAxes[i]] = ends[i] - starts[i];
if (starts[i] > 0) {
sliceOps.push(`outputIdx[${normalizedAxes[i]}] += ${starts[i]};`);
} // else { sliceOps.push(`outputIdx[${normalizedAxes[i]}] += 0;`); }
}
const rank = outputShape.length;
const shaderSource = `
float process(int outputIdx[${rank}]) {
${sliceOps.join('\n ')}
return _A(outputIdx);
}`;
return {
...sliceProgramMetadata,
output: { dims: outputShape, type: input.type, textureType: TextureType.unpacked },
shaderSource,
};
};
const validateInputs = (inputs: Tensor[]): void => {
if (!inputs || inputs.length !== 1) {
throw new Error('Slice requires 1 input.');
}
if (NUMBER_TYPES.indexOf(inputs[0].type) === -1) {
throw new Error('Invalid input type.');
}
};
export const sliceV10 = (inferenceHandler: WebGLInferenceHandler, inputs: Tensor[]): Tensor[] => {
validateInputsV10(inputs);
const attributes = generateSliceAttributesFromInputs(inferenceHandler, inputs);
const output = inferenceHandler.run(
{
...sliceProgramMetadata,
cacheHint: attributes.cacheKey,
get: () => createSliceProgramInfo(inferenceHandler, inputs[0], attributes),
},
[inputs[0]],
);
return [output];
};
const generateSliceAttributesFromInputs = (
inferenceHandler: WebGLInferenceHandler,
inputs: Tensor[],
): SliceAttributes => {
if (
!inferenceHandler.session.isInitializer(inputs[1].dataId) ||
!inferenceHandler.session.isInitializer(inputs[2].dataId) ||
(inputs.length >= 4 && !inferenceHandler.session.isInitializer(inputs[3].dataId)) ||
(inputs.length >= 5 && !inferenceHandler.session.isInitializer(inputs[4].dataId))
) {
throw new Error('dynamic slice attributes are not allowed');
}
if (inputs.length >= 5 && inputs[4].integerData.some((i: number) => i !== 1)) {
throw new Error('currently non-1 steps is not supported for Slice');
}
const starts = Array.from(inputs[1].integerData);
const ends = Array.from(inputs[2].integerData);
const axes = inputs.length >= 4 ? Array.from(inputs[3].integerData) : [];
const cacheKey = `${axes};${starts};${ends}`;
return { starts, ends, axes, cacheKey };
};
const validateInputsV10 = (inputs: Tensor[]): void => {
if (!inputs || inputs.length < 3 || inputs.length > 5) {
throw new Error('Invalid input number.');
}
if (inputs[1].type !== 'int32' || inputs[1].dims.length !== 1) {
throw new Error('Invalid input type.');
}
if (inputs[2].type !== 'int32' || inputs[2].dims.length !== 1) {
throw new Error('Invalid input type.');
}
if (inputs.length >= 4 && (inputs[3].type !== 'int32' || inputs[3].dims.length !== 1)) {
throw new Error('Invalid input type.');
}
if (inputs.length >= 5 && (inputs[4].type !== 'int32' || inputs[4].dims.length !== 1)) {
throw new Error('Invalid input type.');
}
};