UNPKG

onnxruntime-web

Version:

A Javascript library for running ONNX models on browsers

151 lines (150 loc) 5.96 kB
'use strict'; // Copyright (c) Microsoft Corporation. All rights reserved. // Licensed under the MIT License. Object.defineProperty(exports, '__esModule', { value: true }); exports.reduceLogSumSquare = exports.reduceLogSum = exports.reduceProd = exports.reduceMin = exports.reduceMax = exports.reduceMean = exports.reduceSum = exports.parseReduceAttributes = void 0; const attribute_with_cache_key_1 = require('../../../attribute-with-cache-key'); const operators_1 = require('../../../operators'); const util_1 = require('../../../util'); const types_1 = require('../types'); const reduce = (inferenceHandler, inputs, attributes, name, reduceOp) => { validateInputs(inputs); const reduceProgramMetadata = { name, inputNames: ['A'], inputTypes: [types_1.TextureType.unpacked], }; const output = inferenceHandler.run( { ...reduceProgramMetadata, cacheHint: attributes.cacheKey, get: () => createReduceProgramInfo(inferenceHandler, inputs, attributes, name, reduceOp, reduceProgramMetadata), }, inputs, ); return [output]; }; const parseReduceAttributes = (node) => { const axes = node.attributes.getInts('axes', []); const keepDims = node.attributes.getInt('keepdims', 1) === 1; return (0, attribute_with_cache_key_1.createAttributeWithCacheKey)({ axes, keepDims }); }; exports.parseReduceAttributes = parseReduceAttributes; const createReduceProgramInfo = (_handler, inputs, attributes, _name, reduceOp, reduceProgramMetadata) => { const outputShape = []; const iRank = inputs[0].dims.length || 1; const idxCopy = []; // copy output indexes to input indexes const axes = util_1.ShapeUtil.normalizeAxes(attributes.axes, inputs[0].dims.length); const ops = reduceOp(inputs, axes); let reduceOps = ops[1]; for (let k = 0; k < inputs[0].dims.length; k++) { // if this axis is reduced if (axes.indexOf(k) >= 0 || axes.length === 0) { if (attributes.keepDims) { outputShape.push(1); } // else { remove the axis from outputShape; } // loop over the d-th axis reduceOps = ` for(int j${k} = 0; j${k} < ${inputs[0].dims[k]}; j${k}++) { inputIdx[${k}] = j${k}; ${reduceOps} }`; } else { idxCopy.push(`inputIdx[${k}] = outputIdx[${outputShape.length}];`); outputShape.push(inputs[0].dims[k]); } } const oRank = outputShape.length || 1; const shaderSource = ` float process(int outputIdx[${oRank}]) { float value; // final result int inputIdx[${iRank}]; // addressing input data ${idxCopy.join('\n')} ${ops[0]} // init ops for reduce max/min ${reduceOps} ${ops[2]} // final computation for reduce mean return value; }`; return { ...reduceProgramMetadata, output: { dims: outputShape, type: inputs[0].type, textureType: types_1.TextureType.unpacked }, shaderSource, }; }; const validateInputs = (inputs) => { // TODO: support Reduce* operators with 2 inputs. if (!inputs || inputs.length !== 1) { throw new Error('Reduce op requires 1 input.'); } if (operators_1.NUMBER_TYPES.indexOf(inputs[0].type) === -1) { throw new Error('Invalid input type.'); } }; const reduceSum = (inferenceHandler, inputs, attributes) => { const reduceOp = () => ['value = 0.0;', 'value += _A(inputIdx);', '']; return reduce(inferenceHandler, inputs, attributes, 'ReduceSum', reduceOp); }; exports.reduceSum = reduceSum; const reduceMean = (inferenceHandler, inputs, attributes) => { const reduceOp = (inputs, axes) => { let size = 1.0; for (let k = 0; k < inputs[0].dims.length; k++) { if (axes.indexOf(k) >= 0 || axes.length === 0) { size *= inputs[0].dims[k]; } } return ['value = 0.0;', 'value += _A(inputIdx);', `value /= ${size}.;`]; // ensure real number with `.` }; return reduce(inferenceHandler, inputs, attributes, 'ReduceMean', reduceOp); }; exports.reduceMean = reduceMean; const reduceMax = (inferenceHandler, inputs, attributes) => { const reduceOp = (inputs, axes) => { const idxZero = []; for (let k = 0; k < inputs[0].dims.length; k++) { if (axes.indexOf(k) >= 0 || axes.length === 0) { idxZero.push(`inputIdx[${k}] = 0;`); // first element } } return [`${idxZero.join('\n')}\nvalue = _A(inputIdx);`, 'value = max(value, _A(inputIdx));', '']; }; return reduce(inferenceHandler, inputs, attributes, 'ReduceMax', reduceOp); }; exports.reduceMax = reduceMax; const reduceMin = (inferenceHandler, inputs, attributes) => { const reduceOp = (inputs, axes) => { const idxZero = []; for (let k = 0; k < inputs[0].dims.length; k++) { if (axes.indexOf(k) >= 0 || axes.length === 0) { idxZero.push(`inputIdx[${k}] = 0;`); // first element } } return [`${idxZero.join('\n')}\nvalue = _A(inputIdx);`, 'value = min(value, _A(inputIdx));', '']; }; return reduce(inferenceHandler, inputs, attributes, 'ReduceMin', reduceOp); }; exports.reduceMin = reduceMin; const reduceProd = (inferenceHandler, inputs, attributes) => { const reduceOp = () => ['value = 1.0;', 'value *= _A(inputIdx);', '']; return reduce(inferenceHandler, inputs, attributes, 'ReduceProd', reduceOp); }; exports.reduceProd = reduceProd; const reduceLogSum = (inferenceHandler, inputs, attributes) => { const reduceOp = () => ['value = 0.0;', 'value += _A(inputIdx);', 'value = log(value);']; return reduce(inferenceHandler, inputs, attributes, 'ReduceLogSum', reduceOp); }; exports.reduceLogSum = reduceLogSum; const reduceLogSumSquare = (inferenceHandler, inputs, attributes) => { const reduceOp = () => ['float t; value = 0.0;', 't = _A(inputIdx); value += t * t;', '']; return reduce(inferenceHandler, inputs, attributes, 'ReduceLogSumSquare', reduceOp); }; exports.reduceLogSumSquare = reduceLogSumSquare; //# sourceMappingURL=reduce.js.map