onnxruntime-web
Version:
A Javascript library for running ONNX models on browsers
163 lines (145 loc) • 5.65 kB
text/typescript
// Copyright (c) Microsoft Corporation. All rights reserved.
// Licensed under the MIT License.
import { Graph } from '../../../graph';
import { OperatorImplementation, OperatorInitialization } from '../../../operators';
import { Tensor } from '../../../tensor';
import { BroadcastUtil, ShapeUtil } from '../../../util';
import { WebGLInferenceHandler } from '../inference-handler';
import { ProgramInfo, ProgramInfoLoader, ProgramMetadata, TextureType } from '../types';
import { getCoordsDataType, getGlChannels } from '../utils';
import { getActivationSnippet, InternalActivationAttributes, parseInternalActivationAttributes } from './fuse-utils';
import { createPackedMatmulProgramInfoLoader } from './matmul-pack';
export const matMul: OperatorImplementation<InternalActivationAttributes> = (
inferenceHandler: WebGLInferenceHandler,
inputs: Tensor[],
attributes: InternalActivationAttributes,
): Tensor[] => {
validateInputs(inputs);
if (inferenceHandler.session.pack) {
return [inferenceHandler.run(createPackedMatmulProgramInfoLoader(inferenceHandler, inputs, attributes), inputs)];
} else {
return [inferenceHandler.run(createMatmulProgramInfoLoader(inputs, attributes), inputs)];
}
};
export const parseMatMulAttributes: OperatorInitialization<InternalActivationAttributes> = (
node: Graph.Node,
): InternalActivationAttributes => parseInternalActivationAttributes(node.attributes);
const createMatmulProgramMetadata = (hasBias: boolean, cacheHint: string) => ({
name: 'MatMul',
inputNames: hasBias ? ['A', 'B', 'Bias'] : ['A', 'B'],
inputTypes: hasBias
? [TextureType.unpacked, TextureType.unpacked, TextureType.unpacked]
: [TextureType.unpacked, TextureType.unpacked],
cacheHint,
});
function createMatmulProgramInfo(
metadata: ProgramMetadata,
inputs: Tensor[],
activationAttributes: InternalActivationAttributes,
): ProgramInfo {
const aShape = inputs[0].dims;
const bShape = inputs[1].dims;
const outputShape = BroadcastUtil.calcShape(aShape, bShape, true);
if (!outputShape) {
throw new Error("Can't use matmul on the given tensors");
}
const coordsDataType = getCoordsDataType(outputShape.length);
const allGlChannels = getGlChannels();
const { activationFunction, applyActivation } = getActivationSnippet(activationAttributes);
const hasBias = inputs.length > 2;
const processBias = hasBias ? 'value += getBiasForMatmul();' : '';
const getBiasForMatmulSnippet = hasBias
? `${getBiasForMatmul(coordsDataType, allGlChannels, inputs[2].dims, outputShape, false)}`
: '';
const rank = outputShape.length;
const arank = aShape.length;
const brank = bShape.length;
const sharedDim = aShape[aShape.length - 1];
const shaderSource = `
${activationFunction}
${getBiasForMatmulSnippet}
float process(int indices[${rank}]) {
int a[${arank}];
int b[${brank}];
bcastMatmulIndices_A(indices, a);
bcastMatmulIndices_B(indices, b);
float value;
for (int k=0; k<${sharedDim}; ++k) {
a[${arank - 1}] = k;
b[${brank - 2}] = k;
value += _A(a) * _B(b);
}
${processBias}
${applyActivation}
return value;
}`;
return {
...metadata,
output: { dims: outputShape, type: inputs[0].type, textureType: TextureType.unpacked },
shaderSource,
};
}
export function createMatmulProgramInfoLoader(
inputs: Tensor[],
activationAttributes: InternalActivationAttributes,
): ProgramInfoLoader {
const metadata = createMatmulProgramMetadata(inputs.length > 2, activationAttributes.activationCacheKey);
return { ...metadata, get: () => createMatmulProgramInfo(metadata, inputs, activationAttributes) };
}
const validateInputs = (inputs: Tensor[]): void => {
if (!inputs || inputs.length !== 2) {
throw new Error('MatMul requires 2 inputs.');
}
if (inputs[0].dims[inputs[0].dims.length - 1] !== inputs[1].dims[inputs[1].dims.length - 2]) {
throw new Error('shared dimension does not match.');
}
if (
(inputs[0].type !== 'float32' && inputs[0].type !== 'float64') ||
(inputs[1].type !== 'float32' && inputs[1].type !== 'float64')
) {
throw new Error('inputs should be float type');
}
if (inputs[0].type !== inputs[1].type) {
throw new Error('inputs types should match');
}
};
export function getBiasForMatmul(
coordsDataType: string,
allGlChannels: readonly string[],
inShape: readonly number[],
outShape: readonly number[],
isPacked: boolean,
): string {
let unpackedCoordsSnippet = '';
const inRank = inShape.length;
const outRank = outShape.length;
const rankDiff = outRank - inRank;
if (outRank < 2 && inRank > 0) {
unpackedCoordsSnippet = 'coords';
} else {
unpackedCoordsSnippet = inShape.map((_s, i) => `coords.${allGlChannels[i + rankDiff]}`).join(', ');
}
const broadcastDims = BroadcastUtil.getBroadcastDims(inShape, outShape);
const coordsSnippet = broadcastDims.map((d) => `coords.${allGlChannels[d + rankDiff]} = 0;`).join('\n');
const inSize = ShapeUtil.size(inShape);
const isInputScalar = inSize === 1;
let output = 'vec4(outputValue.xx, outputValue.yy)';
if (isInputScalar) {
output = 'vec4(outputValue.x)';
}
const getBiasForMatmulSource = isPacked
? `
vec4 getBiasForMatmul() {
${coordsDataType} coords = getOutputCoords();
${coordsSnippet}
vec4 outputValue = getBias(${unpackedCoordsSnippet});
return ${output};
}`
: `
float getBiasForMatmul() {
${coordsDataType} coords = getOutputCoords();
${coordsSnippet}
return getBias(coords.x);
}`;
return getBiasForMatmulSource;
}