onnxruntime-web
Version:
A Javascript library for running ONNX models on browsers
177 lines (152 loc) • 6.45 kB
text/typescript
// Copyright (c) Microsoft Corporation. All rights reserved.
// Licensed under the MIT License.
import { Tensor } from '../../../tensor';
import { BroadcastUtil, ShapeUtil } from '../../../util';
import { getGlsl } from '../glsl-source';
import { WebGLInferenceHandler } from '../inference-handler';
import { ProgramInfo, ProgramInfoLoader, ProgramMetadata, TextureType } from '../types';
import { getCoordsDataType, getGlChannels } from '../utils';
import { getActivationSnippet, InternalActivationAttributes } from './fuse-utils';
import { getBiasForMatmul } from './matmul';
const createPackedMatmulProgramMetadata = (hasBias: boolean, cacheHint: string) => ({
name: 'MatMul (packed)',
inputNames: hasBias ? ['A', 'B', 'Bias'] : ['A', 'B'],
inputTypes: hasBias
? [TextureType.packed, TextureType.packed, TextureType.packed]
: [TextureType.packed, TextureType.packed],
cacheHint,
});
const createPackedMatmulProgramInfo = (
inferenceHandler: WebGLInferenceHandler,
metadata: ProgramMetadata,
inputs: Tensor[],
activationAttributes: InternalActivationAttributes,
): ProgramInfo => {
const hasBias = inputs.length > 2;
const processBias = hasBias ? 'value += getBiasForMatmul();' : '';
const aShape = inputs[0].dims;
const bShape = inputs[1].dims;
const outputShape = BroadcastUtil.calcShape(aShape, bShape, true);
const isBroadcast = !ShapeUtil.areEqual(inputs[0].dims, inputs[1].dims);
if (!outputShape) {
throw new Error("Can't use matmul on the given tensors");
}
const sharedDim = aShape[aShape.length - 1];
const sharedDimIndex = Math.ceil(sharedDim / 2);
const aRank = aShape.length;
const bRank = bShape.length;
const glsl = getGlsl(inferenceHandler.session.backend.glContext.version);
const coordsDataType = getCoordsDataType(outputShape.length);
const outRank = outputShape.length;
const allGlChannels = getGlChannels();
const { activationFunction, applyActivation } = getActivationSnippet(activationAttributes);
const getBiasForMatmulSnippet = hasBias
? `${getBiasForMatmul(coordsDataType, allGlChannels, inputs[2].dims, outputShape, true)}`
: '';
const getBcastedSamplerForMatmulSnippet = isBroadcast
? `${getBcastSamplerForMatmul(coordsDataType, allGlChannels, inputs, outputShape)}`
: '';
const getSamplerAInLoopSnippet = isBroadcast ? 'getAAtOutCoordsMatmul(i)' : `getA(${getA(allGlChannels, aRank)})`;
const getSamplerBInLoopSnippet = isBroadcast ? 'getBAtOutCoordsMatmul(i)' : `getB(${getB(allGlChannels, bRank)})`;
const getOutputCoordsSnippet = isBroadcast
? ''
: `${coordsDataType} rc =
getOutputCoords(); int lastDim = rc.${allGlChannels[outRank - 1]}; rc.${allGlChannels[outRank - 1]} =
rc.${allGlChannels[outRank - 2]}; rc.${allGlChannels[outRank - 2]} = lastDim;
`;
const shaderSource = `
${getBcastedSamplerForMatmulSnippet}
${getBiasForMatmulSnippet}
${activationFunction}
void main() {
${getOutputCoordsSnippet}
vec4 value = vec4(0);
for (int i = 0; i < ${sharedDimIndex}; i++) {
vec4 a = ${getSamplerAInLoopSnippet};
vec4 b = ${getSamplerBInLoopSnippet};
value += (a.rrbb * b.rgrg);
value += (a.ggaa * b.baba);
}
${processBias}
${applyActivation}
${glsl.output} = value;
}`;
return {
...metadata,
output: { dims: outputShape, type: inputs[0].type, textureType: TextureType.packed },
shaderSource,
hasMain: true,
};
};
export const createPackedMatmulProgramInfoLoader = (
inferenceHandler: WebGLInferenceHandler,
inputs: Tensor[],
activationAttributes: InternalActivationAttributes,
): ProgramInfoLoader => {
const metadata = createPackedMatmulProgramMetadata(inputs.length > 2, activationAttributes.activationCacheKey);
return {
...metadata,
get: () => createPackedMatmulProgramInfo(inferenceHandler, metadata, inputs, activationAttributes),
};
};
function getBcastSamplerForMatmul(
coordsDataType: string,
allGlChannels: readonly string[],
inputs: Tensor[],
outShape: readonly number[],
): string {
let unpackedACoordsSnippet = [];
let unpackedBCoordsSnippet = [];
const inAShape = inputs[0].dims;
const inBShape = inputs[1].dims;
const inARank = inAShape.length;
const inBRank = inBShape.length;
const outRank = outShape.length;
const rankADiff = outRank - inARank;
const rankBDiff = outRank - inBRank;
unpackedACoordsSnippet = inAShape.map((_s, i) => `coords.${allGlChannels[i + rankADiff]}`);
unpackedACoordsSnippet[inARank - 1] = 'i*2';
unpackedACoordsSnippet.join(', ');
unpackedBCoordsSnippet = inBShape.map((_s, i) => `coords.${allGlChannels[i + rankBDiff]}`);
unpackedBCoordsSnippet[inBRank - 2] = 'i*2';
unpackedBCoordsSnippet.join(', ');
const broadcastADims = BroadcastUtil.getBroadcastDims(inAShape, outShape);
const broadcastBDims = BroadcastUtil.getBroadcastDims(inBShape, outShape);
const coordsASnippet = broadcastADims.map((d) => `coords.${allGlChannels[d + rankADiff]} = 0;`).join('\n');
const coordsBSnippet = broadcastBDims.map((d) => `coords.${allGlChannels[d + rankBDiff]} = 0;`).join('\n');
const swapDimSnippet = `int lastDim = coords.${allGlChannels[outRank - 1]};
coords.${allGlChannels[outRank - 1]} = coords.${allGlChannels[outRank - 2]};
coords.${allGlChannels[outRank - 2]} = lastDim;`;
const getBcastSamplerMatmulSource = `
vec4 getAAtOutCoordsMatmul(int i) {
${coordsDataType} coords = getOutputCoords();
${swapDimSnippet}
${coordsASnippet}
vec4 outputValue = getA(${unpackedACoordsSnippet});
return outputValue;
}
vec4 getBAtOutCoordsMatmul(int i) {
${coordsDataType} coords = getOutputCoords();
${swapDimSnippet}
${coordsBSnippet}
vec4 outputValue = getB(${unpackedBCoordsSnippet});
return outputValue;
}`;
return getBcastSamplerMatmulSource;
}
function getA(allGlChannels: string[], rank: number): string {
let res = '';
for (let i = 0; i < rank - 2; i++) {
res += `rc.${allGlChannels[i]}, `;
}
res += `rc.${allGlChannels[rank - 2]}, ` + 'i*2';
return res;
}
function getB(allGlChannels: string[], rank: number): string {
let res = '';
for (let i = 0; i < rank - 2; i++) {
res += `rc.${allGlChannels[i]}, `;
}
res += 'i*2, ' + `rc.${allGlChannels[rank - 1]}`;
return res;
}