onnxruntime-web
Version:
A Javascript library for running ONNX models on browsers
154 lines (137 loc) • 5.42 kB
text/typescript
// Copyright (c) Microsoft Corporation. All rights reserved.
// Licensed under the MIT License.
import { AttributeWithCacheKey, createAttributeWithCacheKey } from '../../../attribute-with-cache-key';
import { Graph } from '../../../graph';
import { OperatorImplementation, OperatorInitialization } from '../../../operators';
import { Tensor } from '../../../tensor';
import { GemmUtil } from '../../../util';
import { WebGLInferenceHandler } from '../inference-handler';
import { ProgramInfo, ProgramInfoLoader, ProgramMetadata, TextureType } from '../types';
export interface GemmAttributes extends AttributeWithCacheKey {
transA: boolean;
transB: boolean;
alpha: number;
beta: number;
isOptionalC: boolean; // in opset 11, C becomes optional
}
export const gemm: OperatorImplementation<GemmAttributes> = (
inferenceHandler: WebGLInferenceHandler,
inputs: Tensor[],
attributes: GemmAttributes,
): Tensor[] => {
validateInputs(inputs, attributes);
const output = inferenceHandler.run(createGemmProgramInfoLoader(inputs, attributes), inputs);
return [output];
};
const parseGemmAttributes = (node: Graph.Node, isOptionalC: boolean): GemmAttributes => {
const transA = node.attributes.getInt('transA', 0) !== 0;
const transB = node.attributes.getInt('transB', 0) !== 0;
const alpha = node.attributes.getFloat('alpha', 1.0);
const beta = node.attributes.getFloat('beta', 1.0);
return createAttributeWithCacheKey({ transA, transB, alpha, beta, isOptionalC });
};
export const parseGemmAttributesV7: OperatorInitialization<GemmAttributes> = (node: Graph.Node): GemmAttributes =>
parseGemmAttributes(node, false);
export const parseGemmAttributesV11: OperatorInitialization<GemmAttributes> = (node: Graph.Node): GemmAttributes =>
parseGemmAttributes(node, true);
const createGemmProgramInfoLoader = (inputs: Tensor[], attributes: GemmAttributes): ProgramInfoLoader => {
const metadata = {
name: 'Gemm',
inputNames: inputs.length === 3 ? ['A', 'B', 'C'] : ['A', 'B'],
inputTypes:
inputs.length === 3
? [TextureType.unpacked, TextureType.unpacked, TextureType.unpacked]
: [TextureType.unpacked, TextureType.unpacked],
key: attributes.cacheKey,
};
return { ...metadata, get: () => createGemmProgramInfo(metadata, inputs, attributes) };
};
const createGemmProgramInfo = (
metadata: ProgramMetadata,
inputs: Tensor[],
attributes: GemmAttributes,
): ProgramInfo => {
const aShape = inputs[0].dims.slice();
const bShape = inputs[1].dims.slice();
const [M, N] = GemmUtil.getShapeOfGemmResult(
aShape,
attributes.transA,
bShape,
attributes.transB,
inputs.length === 3 ? inputs[2].dims : undefined,
);
const outputShape = [M, N];
if (!outputShape) {
throw new Error("Can't use gemm on the given tensors");
}
let sharedDim = aShape[aShape.length - 1];
let line = '';
if (attributes.transA) {
sharedDim = aShape[0];
}
if (attributes.transA && attributes.transB) {
line = 'value += _A_T(a) * _B_T(b);';
} else if (attributes.transA && !attributes.transB) {
line = 'value += _A_T(a) * _B(b);';
} else if (!attributes.transA && attributes.transB) {
line = 'value += _A(a) * _B_T(b);';
} else if (!attributes.transA && !attributes.transB) {
line = 'value += _A(a) * _B(b);';
}
const rank = outputShape.length;
const declareC = inputs.length === 3 ? `int c[${inputs[2].dims.length}];` : '';
const broadcastC = inputs.length === 3 ? 'bcastIndices_C(indices, c);' : '';
const calculateC = inputs.length === 3 ? 'value += beta * _C(c);' : '';
const shaderSource = `
float process(int indices[${rank}]) {
int a[${rank}];
int b[${rank}];
${declareC}
copyVec(indices, a);
copyVec(indices, b);
${broadcastC}
float value = 0.0;
for (int k=0; k<${sharedDim}; ++k) {
a[${rank - 1}] = k;
b[${rank - 2}] = k;
${line}
}
value = value * alpha;
${calculateC}
return value;
}`;
return {
...metadata,
output: { dims: outputShape, type: inputs[0].type, textureType: TextureType.unpacked },
variables: [
{ name: 'alpha', type: 'float', data: attributes.alpha },
{ name: 'beta', type: 'float', data: attributes.beta },
],
shaderSource,
};
};
const validateInputs = (inputs: Tensor[], attributes: GemmAttributes): void => {
if (!inputs) {
throw new Error('Input is missing');
}
if (attributes.isOptionalC && (inputs.length < 2 || inputs.length > 3)) {
throw new Error('Invaid input shape.');
}
if (!attributes.isOptionalC && inputs.length !== 3) {
throw new Error('Gemm requires 3 inputs');
}
// 'C' can be of dimensionality 1 or 2 only
if (inputs.length === 3 && inputs[2].dims.length !== 1 && inputs[2].dims.length !== 2) {
throw new Error('Invalid input shape of C');
}
if (
(inputs[0].type !== 'float32' && inputs[0].type !== 'float64') ||
(inputs[1].type !== 'float32' && inputs[1].type !== 'float64') ||
(inputs.length === 3 && inputs[2].type !== 'float32' && inputs[2].type !== 'float64')
) {
throw new Error('Invalid input type.');
}
if (inputs[0].type !== inputs[1].type || (inputs.length === 3 && inputs[0].type !== inputs[2].type)) {
throw new Error('Input types are mismatched');
}
};