onnxruntime-web
Version:
A Javascript library for running ONNX models on browsers
92 lines (84 loc) • 3.47 kB
text/typescript
// Copyright (c) Microsoft Corporation. All rights reserved.
// Licensed under the MIT License.
import { Tensor } from '../../../tensor';
import { ShapeUtil } from '../../../util';
import { getGlsl } from '../glsl-source';
import { WebGLInferenceHandler } from '../inference-handler';
import { ProgramInfo, ProgramInfoLoader, ProgramMetadata, TextureType } from '../types';
import { getActivationSnippet, InternalActivationAttributes } from './fuse-utils';
import { calculateIm2ColDims } from './im2col';
const createDotProductProgramMetadata = (hasBias: boolean, attributes: InternalActivationAttributes) => ({
name: 'ConvDotProduct',
inputNames: hasBias ? ['Im2Col', 'K', 'B'] : ['Im2Col', 'K'],
inputTypes: hasBias
? [TextureType.unpacked, TextureType.packedLastDimension, TextureType.unpacked]
: [TextureType.unpacked, TextureType.packedLastDimension],
cacheKey: attributes.activationCacheKey,
});
const createDotProductProgramInfo = (
inferenceHandler: WebGLInferenceHandler,
metadata: ProgramMetadata,
inputs: readonly Tensor[],
outputShape: number[],
attributes: InternalActivationAttributes,
): ProgramInfo => {
const xshape = inputs[0].dims;
const kshape = inputs[1].dims;
const adjustedKernelShape = [kshape[0], Math.ceil((xshape[1] * kshape[2] * kshape[3]) / 4)];
const im2colShape = calculateIm2ColDims(xshape, kshape, outputShape);
const [kWidth, kHeight] = inferenceHandler.calculateTextureWidthAndHeight(
adjustedKernelShape,
TextureType.packedLastDimension,
);
const im2colStrides = ShapeUtil.computeStrides(im2colShape);
const [im2colWidth, im2colHeight] = inferenceHandler.calculateTextureWidthAndHeight(
im2colShape,
TextureType.packedLastDimension,
);
const rank = outputShape.length;
const initValue = inputs.length < 3 ? '0.0' : '_B(b)';
const sharedDim = Math.ceil((xshape[1] * kshape[2] * kshape[3]) / 4);
const { activationFunction, applyActivation } = getActivationSnippet(attributes);
const glsl = getGlsl(inferenceHandler.session.backend.glContext.version);
const shaderSource = `
${activationFunction}
float process(int indices[${rank}]) {
int b[1];
b[0] = indices[1];
int im2col[4];
im2col[0] = indices[0];
im2col[1] = indices[2];
im2col[2] = indices[3];
int im2colOffset = im2col[0] * ${im2colStrides[0]} + im2col[1] * ${im2colStrides[1]} + im2col[2] * ${
im2colStrides[2]
};
int kernelOffset = indices[1] * ${adjustedKernelShape[1]};
float value = ${initValue};
for (int i = 0; i < ${sharedDim}; ++i) {
vec2 im2colCoords = offsetToCoords(im2colOffset, ${im2colWidth}, ${im2colHeight});
vec2 kernelCoords = offsetToCoords(kernelOffset, ${kWidth}, ${kHeight});
value += dot(${glsl.texture2D}(Im2Col, im2colCoords), ${glsl.texture2D}(K, kernelCoords));
++im2colOffset;
++kernelOffset;
}
${applyActivation}
return value;
}`;
return {
...metadata,
output: { dims: outputShape, type: inputs[0].type, textureType: TextureType.unpacked },
shaderSource,
};
};
export const createDotProductProgramInfoLoader = (
inferenceHandler: WebGLInferenceHandler,
inputs: readonly Tensor[],
outputShape: number[],
attributes: InternalActivationAttributes,
): ProgramInfoLoader => {
const metadata = createDotProductProgramMetadata(inputs.length > 2, attributes);
return {
...metadata,
get: () => createDotProductProgramInfo(inferenceHandler, metadata, inputs, outputShape, attributes),
};
};