UNPKG

onnxruntime-web

Version:

A Javascript library for running ONNX models on browsers

92 lines (84 loc) 3.47 kB
// Copyright (c) Microsoft Corporation. All rights reserved. // Licensed under the MIT License. import { Tensor } from '../../../tensor'; import { ShapeUtil } from '../../../util'; import { getGlsl } from '../glsl-source'; import { WebGLInferenceHandler } from '../inference-handler'; import { ProgramInfo, ProgramInfoLoader, ProgramMetadata, TextureType } from '../types'; import { getActivationSnippet, InternalActivationAttributes } from './fuse-utils'; import { calculateIm2ColDims } from './im2col'; const createDotProductProgramMetadata = (hasBias: boolean, attributes: InternalActivationAttributes) => ({ name: 'ConvDotProduct', inputNames: hasBias ? ['Im2Col', 'K', 'B'] : ['Im2Col', 'K'], inputTypes: hasBias ? [TextureType.unpacked, TextureType.packedLastDimension, TextureType.unpacked] : [TextureType.unpacked, TextureType.packedLastDimension], cacheKey: attributes.activationCacheKey, }); const createDotProductProgramInfo = ( inferenceHandler: WebGLInferenceHandler, metadata: ProgramMetadata, inputs: readonly Tensor[], outputShape: number[], attributes: InternalActivationAttributes, ): ProgramInfo => { const xshape = inputs[0].dims; const kshape = inputs[1].dims; const adjustedKernelShape = [kshape[0], Math.ceil((xshape[1] * kshape[2] * kshape[3]) / 4)]; const im2colShape = calculateIm2ColDims(xshape, kshape, outputShape); const [kWidth, kHeight] = inferenceHandler.calculateTextureWidthAndHeight( adjustedKernelShape, TextureType.packedLastDimension, ); const im2colStrides = ShapeUtil.computeStrides(im2colShape); const [im2colWidth, im2colHeight] = inferenceHandler.calculateTextureWidthAndHeight( im2colShape, TextureType.packedLastDimension, ); const rank = outputShape.length; const initValue = inputs.length < 3 ? '0.0' : '_B(b)'; const sharedDim = Math.ceil((xshape[1] * kshape[2] * kshape[3]) / 4); const { activationFunction, applyActivation } = getActivationSnippet(attributes); const glsl = getGlsl(inferenceHandler.session.backend.glContext.version); const shaderSource = ` ${activationFunction} float process(int indices[${rank}]) { int b[1]; b[0] = indices[1]; int im2col[4]; im2col[0] = indices[0]; im2col[1] = indices[2]; im2col[2] = indices[3]; int im2colOffset = im2col[0] * ${im2colStrides[0]} + im2col[1] * ${im2colStrides[1]} + im2col[2] * ${ im2colStrides[2] }; int kernelOffset = indices[1] * ${adjustedKernelShape[1]}; float value = ${initValue}; for (int i = 0; i < ${sharedDim}; ++i) { vec2 im2colCoords = offsetToCoords(im2colOffset, ${im2colWidth}, ${im2colHeight}); vec2 kernelCoords = offsetToCoords(kernelOffset, ${kWidth}, ${kHeight}); value += dot(${glsl.texture2D}(Im2Col, im2colCoords), ${glsl.texture2D}(K, kernelCoords)); ++im2colOffset; ++kernelOffset; } ${applyActivation} return value; }`; return { ...metadata, output: { dims: outputShape, type: inputs[0].type, textureType: TextureType.unpacked }, shaderSource, }; }; export const createDotProductProgramInfoLoader = ( inferenceHandler: WebGLInferenceHandler, inputs: readonly Tensor[], outputShape: number[], attributes: InternalActivationAttributes, ): ProgramInfoLoader => { const metadata = createDotProductProgramMetadata(inputs.length > 2, attributes); return { ...metadata, get: () => createDotProductProgramInfo(inferenceHandler, metadata, inputs, outputShape, attributes), }; };