onnxruntime-web
Version:
A Javascript library for running ONNX models on browsers
196 lines (171 loc) • 7.31 kB
text/typescript
// Copyright (c) Microsoft Corporation. All rights reserved.
// Licensed under the MIT License.
import { AttributeWithCacheKey, createAttributeWithCacheKey } from '../../../attribute-with-cache-key';
import { Graph } from '../../../graph';
import { OperatorImplementation, OperatorInitialization } from '../../../operators';
import { Tensor } from '../../../tensor';
import { WebGLInferenceHandler } from '../inference-handler';
import { ProgramInfo, ProgramInfoLoader, ProgramMetadata, TextureType } from '../types';
import { createPackedConcatProgramInfoLoader } from './concat-packed';
export interface ConcatAttributes extends AttributeWithCacheKey {
readonly axis: number;
}
export const concat: OperatorImplementation<ConcatAttributes> = (
inferenceHandler: WebGLInferenceHandler,
inputs: Tensor[],
attributes: ConcatAttributes,
): Tensor[] => {
validateInputs(inputs);
if (inferenceHandler.session.pack && inputs[0].dims.length > 1) {
const output = inferenceHandler.run(
createPackedConcatProgramInfoLoader(inferenceHandler, inputs, attributes),
inputs,
);
return [output];
} else {
const output = inferenceHandler.run(
createUnpackedConcatProgramInfoLoader(inferenceHandler, inputs, attributes),
inputs,
);
return [output];
}
};
const createUnpackedConcatProgramMetadata = (inputCount: number, cacheHint: string) => ({
name: 'Concat',
inputNames: Array.from({ length: inputCount }, (_v, i) => `X${i}`),
inputTypes: Array(inputCount).fill(TextureType.unpacked),
cacheHint,
});
const createUnpackedConcatProgramInfo = (
_handler: WebGLInferenceHandler,
metadata: ProgramMetadata,
inputs: Tensor[],
axis: number,
): ProgramInfo => {
const inputShape = inputs[0].dims.slice();
if (axis >= inputShape.length || axis < -1 * inputShape.length) {
throw new Error("axis specified for concat doesn't match input dimensionality");
}
if (axis < 0) {
axis = inputShape.length + axis;
}
// ensure all of the non-concatenated axes match each other
// calculate the shape of the output tensor while we do that
const outputShape = inputShape.slice(0);
for (let i = 1; i < inputs.length; i++) {
const dataNShape = inputs[i].dims.slice();
for (let axisIndex = 0; axisIndex < inputShape.length; axisIndex++) {
// add to the placeholder for computing output shape
if (axisIndex === axis) {
outputShape[axis] += dataNShape[axisIndex];
}
// ensure all non-cancatenated axes match each other
else if (inputShape[axisIndex] !== dataNShape[axisIndex]) {
throw new Error('non concat dimensions must match');
}
}
}
const rank = outputShape.length;
const sizeInConcatAxis = new Array<number>(inputs.length);
let previousSum = 0;
for (let i = 0; i < sizeInConcatAxis.length; ++i) {
previousSum += inputs[i].dims[axis];
sizeInConcatAxis[i] = previousSum;
}
let getTextureIndexWhereDataResidesMethod = '';
// in most cases linear search is sufficient, as in most scenarios, only 2 tensors are concatenated
if (inputs.length < 5) {
getTextureIndexWhereDataResidesMethod = getTextureIndexWhereDataResidesLinearSearch(sizeInConcatAxis);
} else {
getTextureIndexWhereDataResidesMethod = getTextureIndexWhereDataResidesBinarySearch(sizeInConcatAxis);
}
const fetchDataFromCorrectTextureMethod = getFetchDataFromCorrectTextureMethod(inputs.length, rank);
const getSizeInConcatAxisValueFromIndexMethod = getGetSizeInConcatAxisValueFromIndexMethod(sizeInConcatAxis);
const shaderSource = `
${fetchDataFromCorrectTextureMethod}
${getSizeInConcatAxisValueFromIndexMethod}
${getTextureIndexWhereDataResidesMethod}
float process(int indices[${rank}]) {
int textureIndex = getTextureWhereDataResides (indices[${axis}]);
if(textureIndex != 0) {
indices[${axis}] = indices[${axis}] - int(getSizeInConcatAxisValueFromIndex(textureIndex-int(1)));
}
return fetchDataFromCorrectTexture(textureIndex, indices);
}`;
return {
...metadata,
output: { dims: outputShape, type: inputs[0].type, textureType: TextureType.unpacked },
shaderSource,
};
};
const createUnpackedConcatProgramInfoLoader = (
handler: WebGLInferenceHandler,
inputs: Tensor[],
attributes: ConcatAttributes,
): ProgramInfoLoader => {
const metadata = createUnpackedConcatProgramMetadata(inputs.length, attributes.cacheKey);
return { ...metadata, get: () => createUnpackedConcatProgramInfo(handler, metadata, inputs, attributes.axis) };
};
const getTextureIndexWhereDataResidesLinearSearch = (sizeInConcatAxis: number[]): string => {
const searchAxis = sizeInConcatAxis.map(
(size, i) => `if(index<${size}) {return ${i};}
`,
);
return `int getTextureWhereDataResides(int index) {
${searchAxis.join('')}
}`;
};
// TODO: Implement BinarySearch in GLSL
const getTextureIndexWhereDataResidesBinarySearch = (sizeInConcatAxis: number[]): string =>
getTextureIndexWhereDataResidesLinearSearch(sizeInConcatAxis);
const getFetchDataFromCorrectTextureMethod = (numberOfTensors: number, tensorRank: number) => {
const codeLines: string[] = [`float fetchDataFromCorrectTexture(int textureIndex, int indices[${tensorRank}]) {`];
for (let i = 0; i < numberOfTensors; ++i) {
if (i === 0) {
codeLines.push('\t' + `if (textureIndex == ${i}) { return _X${i}(indices); }`);
} else if (i === numberOfTensors - 1) {
codeLines.push('\t' + `else { return _X${i}(indices); }`);
} else {
codeLines.push('\t' + `else if (textureIndex == ${i}) { return _X${i}(indices); }`);
}
}
codeLines.push('\t' + '}');
return codeLines.join('\n');
};
const getGetSizeInConcatAxisValueFromIndexMethod = (sizeInConcatAxis: number[]): string => {
const codeLines: string[] = ['int getSizeInConcatAxisValueFromIndex(int index) {'];
for (let i = 0; i < sizeInConcatAxis.length; ++i) {
if (i === 0) {
codeLines.push('\t' + `if (index == ${i}) { return ${sizeInConcatAxis[i]}; }`);
} else if (i === sizeInConcatAxis.length - 1) {
codeLines.push('\t' + `else { return ${sizeInConcatAxis[i]}; }`);
} else {
codeLines.push('\t' + `else if (index == ${i}) { return ${sizeInConcatAxis[i]}; }`);
}
}
codeLines.push('\t' + '}');
return codeLines.join('\n');
};
export const parseConcatAttributes: OperatorInitialization<ConcatAttributes> = (node: Graph.Node): ConcatAttributes =>
createAttributeWithCacheKey({ axis: node.attributes.getInt('axis') });
const validateInputs = (inputs: Tensor[]): void => {
if (!inputs || inputs.length < 1) {
throw new Error('too few inputs');
}
const inputType = inputs[0].type;
const inputDimensionality = inputs[0].dims.length;
// TODO: Support string concat
if (inputType === 'string') {
throw new Error('string tensor is not supported yet');
}
for (const input of inputs) {
// make sure types of all inputs match
if (input.type !== inputType) {
throw new Error('input tensors should be one type');
}
// make sure the dimensionality of all inputs are the same
if (input.dims.length !== inputDimensionality) {
throw new Error('input tensors should have the same shape');
}
}
};