UNPKG

onnxruntime-web

Version:

A Javascript library for running ONNX models on browsers

160 lines (157 loc) 6.7 kB
'use strict'; // Copyright (c) Microsoft Corporation. All rights reserved. // Licensed under the MIT License. Object.defineProperty(exports, '__esModule', { value: true }); exports.parseConcatAttributes = exports.concat = void 0; const attribute_with_cache_key_1 = require('../../../attribute-with-cache-key'); const types_1 = require('../types'); const concat_packed_1 = require('./concat-packed'); const concat = (inferenceHandler, inputs, attributes) => { validateInputs(inputs); if (inferenceHandler.session.pack && inputs[0].dims.length > 1) { const output = inferenceHandler.run( (0, concat_packed_1.createPackedConcatProgramInfoLoader)(inferenceHandler, inputs, attributes), inputs, ); return [output]; } else { const output = inferenceHandler.run( createUnpackedConcatProgramInfoLoader(inferenceHandler, inputs, attributes), inputs, ); return [output]; } }; exports.concat = concat; const createUnpackedConcatProgramMetadata = (inputCount, cacheHint) => ({ name: 'Concat', inputNames: Array.from({ length: inputCount }, (_v, i) => `X${i}`), inputTypes: Array(inputCount).fill(types_1.TextureType.unpacked), cacheHint, }); const createUnpackedConcatProgramInfo = (_handler, metadata, inputs, axis) => { const inputShape = inputs[0].dims.slice(); if (axis >= inputShape.length || axis < -1 * inputShape.length) { throw new Error("axis specified for concat doesn't match input dimensionality"); } if (axis < 0) { axis = inputShape.length + axis; } // ensure all of the non-concatenated axes match each other // calculate the shape of the output tensor while we do that const outputShape = inputShape.slice(0); for (let i = 1; i < inputs.length; i++) { const dataNShape = inputs[i].dims.slice(); for (let axisIndex = 0; axisIndex < inputShape.length; axisIndex++) { // add to the placeholder for computing output shape if (axisIndex === axis) { outputShape[axis] += dataNShape[axisIndex]; } // ensure all non-cancatenated axes match each other else if (inputShape[axisIndex] !== dataNShape[axisIndex]) { throw new Error('non concat dimensions must match'); } } } const rank = outputShape.length; const sizeInConcatAxis = new Array(inputs.length); let previousSum = 0; for (let i = 0; i < sizeInConcatAxis.length; ++i) { previousSum += inputs[i].dims[axis]; sizeInConcatAxis[i] = previousSum; } let getTextureIndexWhereDataResidesMethod = ''; // in most cases linear search is sufficient, as in most scenarios, only 2 tensors are concatenated if (inputs.length < 5) { getTextureIndexWhereDataResidesMethod = getTextureIndexWhereDataResidesLinearSearch(sizeInConcatAxis); } else { getTextureIndexWhereDataResidesMethod = getTextureIndexWhereDataResidesBinarySearch(sizeInConcatAxis); } const fetchDataFromCorrectTextureMethod = getFetchDataFromCorrectTextureMethod(inputs.length, rank); const getSizeInConcatAxisValueFromIndexMethod = getGetSizeInConcatAxisValueFromIndexMethod(sizeInConcatAxis); const shaderSource = ` ${fetchDataFromCorrectTextureMethod} ${getSizeInConcatAxisValueFromIndexMethod} ${getTextureIndexWhereDataResidesMethod} float process(int indices[${rank}]) { int textureIndex = getTextureWhereDataResides (indices[${axis}]); if(textureIndex != 0) { indices[${axis}] = indices[${axis}] - int(getSizeInConcatAxisValueFromIndex(textureIndex-int(1))); } return fetchDataFromCorrectTexture(textureIndex, indices); }`; return { ...metadata, output: { dims: outputShape, type: inputs[0].type, textureType: types_1.TextureType.unpacked }, shaderSource, }; }; const createUnpackedConcatProgramInfoLoader = (handler, inputs, attributes) => { const metadata = createUnpackedConcatProgramMetadata(inputs.length, attributes.cacheKey); return { ...metadata, get: () => createUnpackedConcatProgramInfo(handler, metadata, inputs, attributes.axis) }; }; const getTextureIndexWhereDataResidesLinearSearch = (sizeInConcatAxis) => { const searchAxis = sizeInConcatAxis.map( (size, i) => `if(index<${size}) {return ${i};} `, ); return `int getTextureWhereDataResides(int index) { ${searchAxis.join('')} }`; }; // TODO: Implement BinarySearch in GLSL const getTextureIndexWhereDataResidesBinarySearch = (sizeInConcatAxis) => getTextureIndexWhereDataResidesLinearSearch(sizeInConcatAxis); const getFetchDataFromCorrectTextureMethod = (numberOfTensors, tensorRank) => { const codeLines = [`float fetchDataFromCorrectTexture(int textureIndex, int indices[${tensorRank}]) {`]; for (let i = 0; i < numberOfTensors; ++i) { if (i === 0) { codeLines.push('\t' + `if (textureIndex == ${i}) { return _X${i}(indices); }`); } else if (i === numberOfTensors - 1) { codeLines.push('\t' + `else { return _X${i}(indices); }`); } else { codeLines.push('\t' + `else if (textureIndex == ${i}) { return _X${i}(indices); }`); } } codeLines.push('\t' + '}'); return codeLines.join('\n'); }; const getGetSizeInConcatAxisValueFromIndexMethod = (sizeInConcatAxis) => { const codeLines = ['int getSizeInConcatAxisValueFromIndex(int index) {']; for (let i = 0; i < sizeInConcatAxis.length; ++i) { if (i === 0) { codeLines.push('\t' + `if (index == ${i}) { return ${sizeInConcatAxis[i]}; }`); } else if (i === sizeInConcatAxis.length - 1) { codeLines.push('\t' + `else { return ${sizeInConcatAxis[i]}; }`); } else { codeLines.push('\t' + `else if (index == ${i}) { return ${sizeInConcatAxis[i]}; }`); } } codeLines.push('\t' + '}'); return codeLines.join('\n'); }; const parseConcatAttributes = (node) => (0, attribute_with_cache_key_1.createAttributeWithCacheKey)({ axis: node.attributes.getInt('axis') }); exports.parseConcatAttributes = parseConcatAttributes; const validateInputs = (inputs) => { if (!inputs || inputs.length < 1) { throw new Error('too few inputs'); } const inputType = inputs[0].type; const inputDimensionality = inputs[0].dims.length; // TODO: Support string concat if (inputType === 'string') { throw new Error('string tensor is not supported yet'); } for (const input of inputs) { // make sure types of all inputs match if (input.type !== inputType) { throw new Error('input tensors should be one type'); } // make sure the dimensionality of all inputs are the same if (input.dims.length !== inputDimensionality) { throw new Error('input tensors should have the same shape'); } } }; //# sourceMappingURL=concat.js.map