onnxruntime-web
Version:
A Javascript library for running ONNX models on browsers
151 lines (131 loc) • 5.39 kB
text/typescript
// Copyright (c) Microsoft Corporation. All rights reserved.
// Licensed under the MIT License.
import { Tensor } from '../../../tensor';
import { getGlsl } from '../glsl-source';
import { WebGLInferenceHandler } from '../inference-handler';
import { ProgramInfo, ProgramInfoLoader, ProgramMetadata, TextureType } from '../types';
import { getCoordsDataType, getGlChannels } from '../utils';
import { ConcatAttributes } from './concat';
import { getChannels, unpackFromChannel } from './packing-utils';
const createPackedConcatProgramMetadata = (inputCount: number, cacheHint: string) => ({
name: 'Concat (packed)',
inputNames: Array.from({ length: inputCount }, (_v, i) => `X${i}`),
inputTypes: Array(inputCount).fill(TextureType.packed),
cacheHint,
});
const createPackedConcatProgramInfo = (
handler: WebGLInferenceHandler,
metadata: ProgramMetadata,
inputs: Tensor[],
axis: number,
): ProgramInfo => {
const inputShape = inputs[0].dims.slice();
if (axis >= inputShape.length || axis < -1 * inputShape.length) {
throw new Error("axis specified for concat doesn't match input dimensionality");
}
if (axis < 0) {
axis = inputShape.length + axis;
}
// ensure all of the non-concatenated axes match each other
// calculate the shape of the output tensor while we do that
const outputShape = inputShape.slice(0);
for (let i = 1; i < inputs.length; i++) {
const dataNShape = inputs[i].dims.slice();
for (let axisIndex = 0; axisIndex < inputShape.length; axisIndex++) {
// add to the placeholder for computing output shape
if (axisIndex === axis) {
outputShape[axis] += dataNShape[axisIndex];
}
// ensure all non-cancatenated axes match each other
else if (inputShape[axisIndex] !== dataNShape[axisIndex]) {
throw new Error('non concat dimensions must match');
}
}
}
const rank = outputShape.length;
const coords = getChannels('coords', rank);
const dtype = getCoordsDataType(rank);
const unpackChannel = unpackFromChannel();
const shapes = inputs.map((i) => i.dims);
const channels = getGlChannels(rank);
const offsets: number[] = new Array(shapes.length - 1);
offsets[0] = shapes[0][axis];
for (let i = 1; i < offsets.length; i++) {
offsets[i] = offsets[i - 1] + shapes[i][axis];
}
const channel = channels[axis];
const lastChannels = channels.slice(-2);
const allChannels = channels.join();
let getValueSnippet = `if (${channel} < ${offsets[0]}) {
return getChannel(
getX0(${allChannels}), vec2(${lastChannels.join()}));
}`;
for (let i = 1; i < offsets.length; i++) {
const shift = offsets[i - 1];
getValueSnippet += `
if (${channel} < ${offsets[i]} && ${channel} >= ${offsets[i - 1]}) {
return getChannel(
getX${i}(${getShiftedChannelsSnippet(channels, channel, shift)}),
vec2(${getShiftedChannelsSnippet(lastChannels, channel, shift)}));
}`;
}
const lastIndex = offsets.length;
const shift = offsets[offsets.length - 1];
getValueSnippet += `
return getChannel(
getX${lastIndex}(${getShiftedChannelsSnippet(channels, channel, shift)}),
vec2(${getShiftedChannelsSnippet(lastChannels, channel, shift)}));`;
const glsl = getGlsl(handler.session.backend.glContext.version);
const shaderSource = `
${unpackChannel}
float getValue(${channels.map((x) => 'int ' + x)}) {
${getValueSnippet}
}
void main() {
${dtype} coords = getOutputCoords();
int lastDim = coords.${channels[rank - 1]};
coords.${channels[rank - 1]} = coords.${channels[rank - 2]};
coords.${channels[rank - 2]} = lastDim;
vec4 result = vec4(getValue(${coords}), 0., 0., 0.);
${coords[rank - 1]} = ${coords[rank - 1]} + 1;
if (${coords[rank - 1]} < ${outputShape[rank - 1]}) {
result.g = getValue(${coords});
}
${coords[rank - 2]} = ${coords[rank - 2]} + 1;
if (${coords[rank - 2]} < ${outputShape[rank - 2]}) {
result.a = getValue(${coords});
}
${coords[rank - 1]} = ${coords[rank - 1]} - 1;
if (${coords[rank - 2]} < ${outputShape[rank - 2]} &&
${coords[rank - 1]} < ${outputShape[rank - 1]}) {
result.b = getValue(${coords});
}
${glsl.output} = result;
}
`;
return {
...metadata,
output: { dims: outputShape, type: inputs[0].type, textureType: TextureType.packed },
shaderSource,
hasMain: true,
};
};
export const createPackedConcatProgramInfoLoader = (
handler: WebGLInferenceHandler,
inputs: Tensor[],
attributes: ConcatAttributes,
): ProgramInfoLoader => {
const metadata = createPackedConcatProgramMetadata(inputs.length, attributes.cacheKey);
return { ...metadata, get: () => createPackedConcatProgramInfo(handler, metadata, inputs, attributes.axis) };
};
const getShiftedChannelsSnippet = (channels: string[], channel: string, shift: number): string => {
const channelIdx = channels.indexOf(channel);
const res = channels.map((c, idx) => {
if (idx === channelIdx) {
return `${c} - ${shift}`;
} else {
return c;
}
});
return res.join();
};