onnxruntime-web
Version:
A Javascript library for running ONNX models on browsers
124 lines (113 loc) • 4.15 kB
text/typescript
// Copyright (c) Microsoft Corporation. All rights reserved.
// Licensed under the MIT License.
import { AttributeWithCacheKey, createAttributeWithCacheKey } from '../../../attribute-with-cache-key';
import { Graph } from '../../../graph';
import { OperatorImplementation, OperatorInitialization } from '../../../operators';
import { Tensor } from '../../../tensor';
import { getGlsl } from '../glsl-source';
import { WebGLInferenceHandler } from '../inference-handler';
import { ProgramInfo, TextureType } from '../types';
export interface BatchNormalizationAttributes extends AttributeWithCacheKey {
epsilon: number;
momentum: number;
spatial: number;
}
const batchNormalizationProgramMetadata = {
name: 'BatchNormalization',
inputNames: ['A', 'Scale', 'B', 'Mean', 'Variance'],
inputTypes: [
TextureType.unpacked,
TextureType.unpacked,
TextureType.unpacked,
TextureType.unpacked,
TextureType.unpacked,
],
};
export const batchNormalization: OperatorImplementation<BatchNormalizationAttributes> = (
inferenceHandler: WebGLInferenceHandler,
inputs: Tensor[],
attributes: BatchNormalizationAttributes,
): Tensor[] => {
validateInputs(inputs);
const output = inferenceHandler.run(
{
...batchNormalizationProgramMetadata,
cacheHint: attributes.cacheKey,
get: () => createBatchNormalizationProgramInfo(inferenceHandler, inputs, attributes),
},
inputs,
);
return [output];
};
export const parseBatchNormalizationAttributes: OperatorInitialization<BatchNormalizationAttributes> = (
node: Graph.Node,
): BatchNormalizationAttributes => {
const epsilon = node.attributes.getFloat('epsilon', 1e-5);
const momentum = node.attributes.getFloat('momentum', 0.9);
const spatial = node.attributes.getInt('spatial', 1);
return createAttributeWithCacheKey({ epsilon, momentum, spatial });
};
const createBatchNormalizationProgramInfo = (
inferenceHandler: WebGLInferenceHandler,
inputs: Tensor[],
attributes: BatchNormalizationAttributes,
): ProgramInfo => {
const glsl = getGlsl(inferenceHandler.session.backend.glContext.version);
const rank = inputs[0].dims.length;
const [scaleWidth, scaleHeight] = inferenceHandler.calculateTextureWidthAndHeight(
inputs[1].dims,
TextureType.unpacked,
);
const shaderSource = `
float process(int[${rank}] indices) {
vec2 position = offsetToCoords(indices[1], ${scaleWidth}, ${scaleHeight});
float scale = getColorAsFloat(${glsl.texture2D}(Scale, position));
float mean = getColorAsFloat(${glsl.texture2D}(Mean, position));
float variance = getColorAsFloat(${glsl.texture2D}(Variance, position));
float b = getColorAsFloat(${glsl.texture2D}(B, position));
return scale * ( (_A(indices) - mean) / sqrt(variance + float(${attributes.epsilon})) ) + b;
}`;
return {
...batchNormalizationProgramMetadata,
output: { dims: inputs[0].dims, type: inputs[0].type, textureType: TextureType.unpacked },
shaderSource,
};
};
const validateInputs = (inputs: Tensor[]): void => {
if (!inputs || inputs.length !== 5) {
throw new Error('BatchNormalization requires 5 inputs.');
}
const X = inputs[0];
const scale = inputs[1];
const B = inputs[2];
const mean = inputs[3];
const var_ = inputs[4];
// input should atleast have three dimensions - N,C,dim1,...,dimn
// other inputs can have only one dimensions
if (
X.dims.length < 3 ||
scale.dims.length !== 1 ||
B.dims.length !== 1 ||
mean.dims.length !== 1 ||
var_.dims.length !== 1
) {
throw new Error('invalid input shape.');
}
if (
scale.dims[0] !== X.dims[1] ||
B.dims[0] !== X.dims[1] ||
mean.dims[0] !== X.dims[1] ||
var_.dims[0] !== X.dims[1]
) {
throw new Error('invalid input shape.');
}
if (
(X.type !== 'float32' && X.type !== 'float64') ||
(scale.type !== 'float32' && scale.type !== 'float64') ||
(B.type !== 'float32' && B.type !== 'float64') ||
(mean.type !== 'float32' && mean.type !== 'float64') ||
(var_.type !== 'float32' && var_.type !== 'float64')
) {
throw new Error('invalid input tensor types.');
}
};