UNPKG

onnxruntime-web

Version:

A Javascript library for running ONNX models on browsers

102 lines (100 loc) 3.83 kB
'use strict'; // Copyright (c) Microsoft Corporation. All rights reserved. // Licensed under the MIT License. Object.defineProperty(exports, '__esModule', { value: true }); exports.parseBatchNormalizationAttributes = exports.batchNormalization = void 0; const attribute_with_cache_key_1 = require('../../../attribute-with-cache-key'); const glsl_source_1 = require('../glsl-source'); const types_1 = require('../types'); const batchNormalizationProgramMetadata = { name: 'BatchNormalization', inputNames: ['A', 'Scale', 'B', 'Mean', 'Variance'], inputTypes: [ types_1.TextureType.unpacked, types_1.TextureType.unpacked, types_1.TextureType.unpacked, types_1.TextureType.unpacked, types_1.TextureType.unpacked, ], }; const batchNormalization = (inferenceHandler, inputs, attributes) => { validateInputs(inputs); const output = inferenceHandler.run( { ...batchNormalizationProgramMetadata, cacheHint: attributes.cacheKey, get: () => createBatchNormalizationProgramInfo(inferenceHandler, inputs, attributes), }, inputs, ); return [output]; }; exports.batchNormalization = batchNormalization; const parseBatchNormalizationAttributes = (node) => { const epsilon = node.attributes.getFloat('epsilon', 1e-5); const momentum = node.attributes.getFloat('momentum', 0.9); const spatial = node.attributes.getInt('spatial', 1); return (0, attribute_with_cache_key_1.createAttributeWithCacheKey)({ epsilon, momentum, spatial }); }; exports.parseBatchNormalizationAttributes = parseBatchNormalizationAttributes; const createBatchNormalizationProgramInfo = (inferenceHandler, inputs, attributes) => { const glsl = (0, glsl_source_1.getGlsl)(inferenceHandler.session.backend.glContext.version); const rank = inputs[0].dims.length; const [scaleWidth, scaleHeight] = inferenceHandler.calculateTextureWidthAndHeight( inputs[1].dims, types_1.TextureType.unpacked, ); const shaderSource = ` float process(int[${rank}] indices) { vec2 position = offsetToCoords(indices[1], ${scaleWidth}, ${scaleHeight}); float scale = getColorAsFloat(${glsl.texture2D}(Scale, position)); float mean = getColorAsFloat(${glsl.texture2D}(Mean, position)); float variance = getColorAsFloat(${glsl.texture2D}(Variance, position)); float b = getColorAsFloat(${glsl.texture2D}(B, position)); return scale * ( (_A(indices) - mean) / sqrt(variance + float(${attributes.epsilon})) ) + b; }`; return { ...batchNormalizationProgramMetadata, output: { dims: inputs[0].dims, type: inputs[0].type, textureType: types_1.TextureType.unpacked }, shaderSource, }; }; const validateInputs = (inputs) => { if (!inputs || inputs.length !== 5) { throw new Error('BatchNormalization requires 5 inputs.'); } const X = inputs[0]; const scale = inputs[1]; const B = inputs[2]; const mean = inputs[3]; const var_ = inputs[4]; // input should atleast have three dimensions - N,C,dim1,...,dimn // other inputs can have only one dimensions if ( X.dims.length < 3 || scale.dims.length !== 1 || B.dims.length !== 1 || mean.dims.length !== 1 || var_.dims.length !== 1 ) { throw new Error('invalid input shape.'); } if ( scale.dims[0] !== X.dims[1] || B.dims[0] !== X.dims[1] || mean.dims[0] !== X.dims[1] || var_.dims[0] !== X.dims[1] ) { throw new Error('invalid input shape.'); } if ( (X.type !== 'float32' && X.type !== 'float64') || (scale.type !== 'float32' && scale.type !== 'float64') || (B.type !== 'float32' && B.type !== 'float64') || (mean.type !== 'float32' && mean.type !== 'float64') || (var_.type !== 'float32' && var_.type !== 'float64') ) { throw new Error('invalid input tensor types.'); } }; //# sourceMappingURL=batch-normalization.js.map