onnxruntime-web
Version:
A Javascript library for running ONNX models on browsers
358 lines (322 loc) • 14.2 kB
text/typescript
// Copyright (c) Microsoft Corporation. All rights reserved.
// Licensed under the MIT License.
import { InferenceHandler } from '../../backend';
import { Logger } from '../../instrument';
import { Tensor } from '../../tensor';
import { ShapeUtil } from '../../util';
import { createPackProgramInfoLoader } from './ops/pack';
import { createPackedReshape3DProgramInfoLoader, isReshapeCheap, processDims3D } from './ops/reshape-packed';
import { encodeAsUint8 } from './ops/uint8-encode';
import { createUnpackProgramInfoLoader } from './ops/unpack';
import { WebGLSessionHandler } from './session-handler';
import { EncoderUsage } from './texture-data-encoder';
import {
calculateTextureWidthAndHeight,
createTextureLayoutFromShape,
createTextureLayoutFromTextureType,
} from './texture-layout';
import { Artifact, ProgramInfo, ProgramInfoLoader, TextureData, TextureLayout, TextureType } from './types';
const getProgramInfoUniqueKey = (
programInfo: ProgramInfo | ProgramInfoLoader,
inputTextureDatas: TextureData[],
): string => {
const inputs = inputTextureDatas
.map((texture) => `${texture.unpackedShape.join(',')};${texture.width}x${texture.height}`)
.join('_');
let key = programInfo.name;
if (programInfo.cacheHint) {
key += '[' + programInfo.cacheHint + ']';
}
key += ':' + inputs;
return key;
};
export class WebGLInferenceHandler implements InferenceHandler {
private packedTextureDataCache: Map<Tensor.Id, TextureData>;
private unpackedTextureDataCache: Map<Tensor.Id, TextureData>;
constructor(public session: WebGLSessionHandler) {
this.packedTextureDataCache = new Map();
this.unpackedTextureDataCache = new Map();
}
/**
* @returns [width, height]
*/
calculateTextureWidthAndHeight(shape: readonly number[], textureType: TextureType): [number, number] {
return calculateTextureWidthAndHeight(this.session.layoutStrategy, shape, textureType);
}
executeProgram(program: ProgramInfo | ProgramInfoLoader, inputs: readonly Tensor[]): TextureData {
if (inputs.length < program.inputNames.length) {
throw new Error(`Input size mustn't be less than ${program.inputNames.length}.`);
}
if (program.inputNames.length !== program.inputTypes.length) {
throw new Error('input names size does not match input types');
}
// create texture info for input
const inputTextureDatas: TextureData[] = [];
for (let i = 0; i < program.inputNames.length; ++i) {
inputTextureDatas[i] = this.getOrCreateTextureData(inputs[i], program.inputTypes[i]);
}
const key = getProgramInfoUniqueKey(program, inputTextureDatas);
let artifact = this.session.programManager.getArtifact(key);
const programInfo = artifact
? artifact.programInfo
: typeof (program as ProgramInfoLoader).get === 'function'
? (program as ProgramInfoLoader).get()
: (program as ProgramInfo);
// create texture info for output
const outputTextureLayout = createTextureLayoutFromTextureType(
this.session.layoutStrategy,
programInfo.output.dims,
programInfo.output.textureType,
);
const outputTextureData = this.createTextureData(outputTextureLayout, programInfo.output.type);
if (!artifact) {
artifact = this.session.programManager.build(programInfo, inputTextureDatas, outputTextureData);
this.session.programManager.setArtifact(key, artifact);
}
this.runProgram(artifact, inputTextureDatas, outputTextureData);
return outputTextureData;
}
run(program: ProgramInfoLoader, inputs: readonly Tensor[]): Tensor {
const outputTextureData = this.executeProgram(program, inputs);
return outputTextureData.tensor;
}
private runProgram(artifact: Artifact, inputs: TextureData[], output: TextureData): void {
// input should match
for (let i = 0; i < inputs.length; ++i) {
if (!!inputs[i].isPacked !== (artifact.programInfo.inputTypes[i] === TextureType.packed)) {
throw new Error(`input[${i}] property packed inconsistent`);
}
}
// output should match
if (!!output.isPacked !== (artifact.programInfo.output.textureType === TextureType.packed)) {
throw new Error('output property packed inconsistent');
}
this.session.programManager.run(artifact, inputs, output);
}
/**
* Create a TextureData object from a tensor.
* Usage = EncoderUsage.UploadOnly.
* If a related texture data is found in cache, returns it;
* Otherwise:
* Creates a new texture layout if not provided;
* Creates WebGLTexture with the layout;
* Upload tensor data to the texture;
* Creates a texture data object associated with the given tensor.
* @param tensor the tensor with data to upload
*/
private getOrCreateTextureData(tensor: Tensor, textureType: TextureType) {
let td = this.getTextureData(tensor.dataId, textureType === TextureType.packed);
if (!td) {
// check if we have texture data in different type
td = this.getTextureData(tensor.dataId, textureType !== TextureType.packed);
if (td) {
if (textureType === TextureType.packed) {
return this.pack(td);
} else {
return this.unpack(td);
}
}
}
if (!td) {
const layout = createTextureLayoutFromTextureType(this.session.layoutStrategy, tensor.dims, textureType);
if (textureType === TextureType.packedLastDimension) {
const group = 1;
const channels = 4;
const shape = tensor.dims;
if (shape.length === 4) {
// pre-processing for kernel data of Conv.
//
// TODO: currently this is a hacking to overwrite Conv's weight. The correct way to do this should be:
// 1. implement texture based const-folding
// 2. create a WebGL program "preprocessConvWeight" to do the same work as below
// 3. run the program before dotProduct.
//
const adjustedKernelShape = [shape[0], Math.ceil((shape[1] * shape[2] * shape[3]) / channels)];
const adjustedLayout = createTextureLayoutFromTextureType(
this.session.layoutStrategy,
adjustedKernelShape,
textureType,
);
let buffer = tensor.numberData;
if ((shape[1] * shape[2] * shape[3]) % channels !== 0) {
const numFeatureMaps = shape[0];
const oldRowSize = shape[1] * shape[2] * shape[3];
const newRowSize = Math.ceil((oldRowSize * group) / channels) * channels;
const newSize = numFeatureMaps * newRowSize;
buffer = new Float32Array(newSize);
for (let f = 0; f < numFeatureMaps; ++f) {
const oldOffset = f * oldRowSize;
const newOffset = f * newRowSize + (f % group) * oldRowSize;
buffer.set(tensor.numberData.subarray(oldOffset, oldOffset + oldRowSize), newOffset);
}
}
return this.createTextureData(adjustedLayout, tensor.type, buffer, tensor, EncoderUsage.UploadOnly);
}
}
if (textureType === TextureType.packed) {
const unpackedTextureLayout = createTextureLayoutFromShape(this.session.layoutStrategy, tensor.dims, 1, [], {
reverseWH: true,
});
const unpackedTextureData = this.createTextureData(
unpackedTextureLayout,
tensor.type,
tensor.numberData,
tensor,
EncoderUsage.UploadOnly,
);
td = this.pack(unpackedTextureData);
} else {
td = this.createTextureData(layout, tensor.type, tensor.numberData, tensor, EncoderUsage.UploadOnly);
}
}
return td;
}
/**
* Create a TextureData object using the given data and bind to the given tensor.
* Usage = EncoderUsage.UploadOnly.
* NOTE: this function is a hack for Conv implementation. should remove this function, after rewriting Conv
* implementation by Graph.Transformer
* @param dataType the tensor data type
* @param data the actual data to upload
* @param tensor the tensor to bind. tensor's data is ignored.
*/
createTextureDataFromLayoutBindTensor(
layout: TextureLayout,
dataType: Tensor.DataType,
data: Tensor.NumberType,
tensor: Tensor,
): TextureData {
return this.createTextureData(layout, dataType, data, tensor, EncoderUsage.UploadOnly);
}
private createTextureData(
layout: TextureLayout,
dataType: Tensor.DataType,
data?: Tensor.NumberType,
tensor?: Tensor,
usage?: EncoderUsage,
): TextureData {
Logger.verbose('InferenceHandler', `Creating TextureData: layout:[${JSON.stringify(layout)}]`);
const texture = this.session.textureManager.createTextureFromLayout(dataType, layout, data, usage);
return this.createTextureDataFromTexture(layout, dataType, texture, tensor);
}
reshapeUnpacked(input: Tensor, reshapedDims: readonly number[]): Tensor {
const inputTD = this.getOrCreateTextureData(input, TextureType.unpacked);
const newTextureLayout: TextureLayout = {
channels: inputTD.channels,
height: inputTD.height,
width: inputTD.width,
// handle reshaping into scalar Tensors
shape: reshapedDims.length !== 0 ? reshapedDims : [1],
strides: ShapeUtil.computeStrides(reshapedDims),
unpackedShape: reshapedDims,
};
const newTextureData = this.createTextureDataFromTexture(newTextureLayout, input.type, inputTD.texture);
return newTextureData.tensor;
}
reshapePacked(input: Tensor, reshapedDims: readonly number[]): Tensor {
const inputTD = this.getOrCreateTextureData(input, TextureType.packed);
// check if the reshape is 'cheap'
if (isReshapeCheap(input.dims, reshapedDims)) {
const newTextureLayout: TextureLayout = {
channels: inputTD.channels,
height: inputTD.height,
width: inputTD.width,
// handle reshaping into scalar Tensors
shape: reshapedDims.length !== 0 ? reshapedDims : [1],
strides: ShapeUtil.computeStrides(reshapedDims),
unpackedShape: reshapedDims,
isPacked: true,
};
const newTextureData = this.createTextureDataFromTexture(newTextureLayout, input.type, inputTD.texture);
return newTextureData.tensor;
}
const squeezedInputShape = processDims3D(input.dims);
const squeezedOutputShape = processDims3D(reshapedDims);
const squeezedInputTensor = this.reshapePacked(input, squeezedInputShape);
const squeezedOutputTensor = this.run(
createPackedReshape3DProgramInfoLoader(this, squeezedInputTensor, squeezedOutputShape),
[squeezedInputTensor],
);
const outputTensor = this.reshapePacked(squeezedOutputTensor, reshapedDims);
return outputTensor;
}
cast(input: Tensor, type: Tensor.DataType): Tensor {
const inputTD = this.getOrCreateTextureData(input, TextureType.unpacked);
const newTextureData = this.createTextureDataFromTexture(inputTD as TextureLayout, type, inputTD.texture);
return newTextureData.tensor;
}
private createTextureDataFromTexture(
layout: TextureLayout,
dataType: Tensor.DataType,
texture: WebGLTexture,
tensor?: Tensor,
tensorId?: Tensor.Id,
) {
const textureData: TextureData = {
...layout,
tensor:
tensor ||
new Tensor(
layout.unpackedShape,
dataType,
(_id: Tensor.Id) => this.readTexture(textureData),
async (_id: Tensor.Id) => this.readTextureAsync(textureData),
undefined,
tensorId,
),
texture,
};
this.setTextureData(textureData.tensor.dataId, textureData, layout.isPacked);
return textureData;
}
private getTextureData(tensorId: Tensor.Id, isPacked = false): TextureData | undefined {
return this.session.isInitializer(tensorId)
? this.session.getTextureData(tensorId, isPacked)
: isPacked
? this.packedTextureDataCache.get(tensorId)
: this.unpackedTextureDataCache.get(tensorId);
}
setTextureData(tensorId: Tensor.Id, td: TextureData, isPacked = false): void {
if (this.session.isInitializer(tensorId)) {
this.session.setTextureData(tensorId, td, isPacked);
} else {
(isPacked ? this.packedTextureDataCache : this.unpackedTextureDataCache).set(tensorId, td);
}
}
isTextureLayoutCached(tensor: Tensor, isPacked = false): boolean {
return !!this.getTextureData(tensor.dataId, isPacked);
}
dispose(): void {
this.session.textureManager.clearActiveTextures();
this.packedTextureDataCache.forEach((td) => this.session.textureManager.releaseTexture(td));
this.packedTextureDataCache = new Map();
this.unpackedTextureDataCache.forEach((td) => this.session.textureManager.releaseTexture(td));
this.unpackedTextureDataCache = new Map();
}
readTexture(textureData: TextureData): Tensor.NumberType {
if (textureData.isPacked) {
return this.readTexture(this.unpack(textureData));
}
if (!this.session.backend.glContext.isFloat32DownloadSupported) {
return this.session.textureManager.readUint8TextureAsFloat(encodeAsUint8(this, textureData));
}
return this.session.textureManager.readTexture(textureData, textureData.tensor.type, textureData.channels);
}
async readTextureAsync(textureData: TextureData): Promise<Tensor.NumberType> {
if (textureData.isPacked) {
return this.readTextureAsync(this.unpack(textureData));
}
if (!this.session.backend.glContext.isFloat32DownloadSupported) {
return this.session.textureManager.readUint8TextureAsFloat(encodeAsUint8(this, textureData));
}
return this.session.textureManager.readTextureAsync(textureData, textureData.tensor.type, textureData.channels);
}
pack(input: TextureData): TextureData {
const outputTextureData = this.executeProgram(createPackProgramInfoLoader(this, input.tensor), [input.tensor]);
return outputTextureData;
}
unpack(input: TextureData): TextureData {
const outputTextureData = this.executeProgram(createUnpackProgramInfoLoader(this, input.tensor), [input.tensor]);
return outputTextureData;
}
}