UNPKG

onnxruntime-web

Version:

A Javascript library for running ONNX models on browsers

119 lines (115 loc) 5.62 kB
## Operators Support Table The following table shows ONNX operators and the supported opset domain/versions in WebGPU EP by ONNX Runtime Web. For example, `4-6, 8+` means ONNX Runtime Web currently support opset version 4 to 6, 8 and above. *This file is automatically generated from the def files via [this script](../script/generate-webgpu-operator-md.ts). Do not modify directly.* | Operator | Opset | Comments | |:--------:|:-------------:|-----| | Abs | ai.onnx(6-12,13+) | | | Acos | ai.onnx(7+) | | | Acosh | ai.onnx(9+) | | | Add | ai.onnx(7-12,13,14+) | | | ArgMax | ai.onnx(1-10,11-12,13+) | | | ArgMin | ai.onnx(1-10,11-12,13+) | | | Asin | ai.onnx(7+) | | | Asinh | ai.onnx(9+) | | | Atan | ai.onnx(7+) | | | Atanh | ai.onnx(9+) | | | Attention | com.microsoft(1+) | need implementing mask and past/present | | AveragePool | ai.onnx(7-9,10,11-18,19+); com.ms.internal.nhwc(7-9,10,11-18,19+) | need perf optimization; need implementing activation | | BatchNormalization | ai.onnx(7-8,9-13,14,15+); com.ms.internal.nhwc(7-8,9-13,14,15+) | | | BiasAdd | com.microsoft(1+) | | | BiasSplitGelu | com.microsoft(1+) | | | Cast | ai.onnx(6-8,9-12,13-18,19-20,21+) | | | Ceil | ai.onnx(6-12,13+) | | | Clip | ai.onnx(6-10,11,12,13+) | | | Concat | ai.onnx(1-3,4-10,11-12,13+) | | | Conv | ai.onnx(1-10,11+); com.ms.internal.nhwc(1-10,11+) | need perf optimization; conv3d is not supported; need implementing activation | | ConvTranspose | ai.onnx(1-10,11+); com.ms.internal.nhwc(1-10,11+) | need perf optimization; ConvTranspose3d is not supported; need implementing activation | | Cos | ai.onnx(7+) | | | Cosh | ai.onnx(9+) | | | CumSum | ai.onnx(11-13,14+) | | | DepthToSpace | ai.onnx(11-12,13+); com.ms.internal.nhwc(11-12,13+) | | | DequantizeLinear | ai.onnx(10-12,13-18,19-20,21+) | | | Div | ai.onnx(7-12,13,14+) | | | Einsum | ai.onnx(12+) | | | Elu | ai.onnx(6+) | | | Equal | ai.onnx(7-10,11-12,13-18,19+) | | | Erf | ai.onnx(9-12,13+) | | | Exp | ai.onnx(6-12,13+) | | | Expand | ai.onnx(8-12,13+) | | | FastGelu | com.microsoft(1+) | | | Flatten | ai.onnx(1-8,9-10,11-12,13-20,21+) | | | Floor | ai.onnx(6-12,13+) | | | FusedConv | com.microsoft(1+) | | | Gather | ai.onnx(1-10,11-12,13+) | | | GatherBlockQuantized | com.microsoft(1+) | | | GatherElements | ai.onnx(11-12,13+) | | | GatherND | ai.onnx(11,12,13+) | | | Gelu | ai.onnx(20+); com.microsoft(1+) | | | Gemm | ai.onnx(7-8,9-10,11-12,13+) | | | GlobalAveragePool | ai.onnx(1+); com.ms.internal.nhwc(1+) | | | GlobalMaxPool | ai.onnx(1+); com.ms.internal.nhwc(1+) | | | Greater | ai.onnx(7-8,9-12,13+) | | | GreaterOrEqual | ai.onnx(12-15,16+) | | | GridSample | ai.onnx(16-19); com.ms.internal.nhwc(16-19) | | | GroupQueryAttention | com.microsoft(1+) | | | HardSigmoid | ai.onnx(6+) | | | If | ai.onnx(1-10,11-12,13-18,19-20,21+) | | | InstanceNormalization | ai.onnx(6+); com.ms.internal.nhwc(6+) | | | LayerNormalization | ai.onnx(1-16,17+) | | | LeakyRelu | ai.onnx(6-15,16+) | | | Less | ai.onnx(7-8,9-12,13+) | | | LessOrEqual | ai.onnx(12-15,16+) | | | Log | ai.onnx(6-12,13+) | | | MatMul | ai.onnx(1-12,13+) | | | MatMulNBits | com.microsoft(1+) | | | MaxPool | ai.onnx(1-7,8-9,10,11,12+); com.ms.internal.nhwc(1-7,8-9,10,11,12+) | need perf optimization; need implementing activation | | MemcpyFromHost | ai.onnx(1+) | | | MemcpyToHost | ai.onnx(1+) | | | Mul | ai.onnx(7-12,13,14+) | | | MultiHeadAttention | com.microsoft(1+) | need implementing mask and past/present | | Neg | ai.onnx(6-12,13+) | | | Not | ai.onnx(1+) | | | Pad | ai.onnx(2-10,11-12,13-17,18,19-20,21+) | | | Pow | ai.onnx(7-11,12,13-14,15+) | | | QuickGelu | com.microsoft(1+) | | | Range | ai.onnx(11+) | | | Reciprocal | ai.onnx(6-12,13+) | | | ReduceL1 | ai.onnx(1-10,11-12,13-17,18+) | | | ReduceL2 | ai.onnx(1-10,11-12,13-17,18+) | | | ReduceLogSum | ai.onnx(1-10,11-12,13-17,18+) | | | ReduceLogSumExp | ai.onnx(1-10,11-12,13-17,18+) | | | ReduceMax | ai.onnx(1-10,11,12,13-17,18-19,20+) | | | ReduceMean | ai.onnx(1-10,11-12,13-17,18+) | | | ReduceMin | ai.onnx(1-10,11,12,13-17,18-19,20+) | | | ReduceProd | ai.onnx(1-10,11-12,13-17,18+) | | | ReduceSum | ai.onnx(1-10,11-12,13+) | | | ReduceSumSquare | ai.onnx(1-10,11-12,13-17,18+) | | | Relu | ai.onnx(6-12,13,14+) | | | Reshape | ai.onnx(5-12,13,14-18,19-20,21+) | no GPU kernel | | Resize | ai.onnx(10,11-12,13-17,18,19+); com.ms.internal.nhwc(10,11-12,13-17,18,19+) | CoordinateTransformMode align_corners is not supported with downsampling | | RotaryEmbedding | com.microsoft(1+) | | | ScatterND | ai.onnx(11-12,13-15,16-17,18+) | | | Shape | ai.onnx(1-12,13-14,15-18,19-20,21+) | no GPU kernel; an ORT warning is generated - need to fix | | Sigmoid | ai.onnx(6-12,13+) | | | SimplifiedLayerNormalization | ai.onnx(1+) | | | Sin | ai.onnx(7+) | | | Sinh | ai.onnx(9+) | | | SkipLayerNormalization | com.microsoft(1+) | | | SkipSimplifiedLayerNormalization | com.microsoft(1+) | | | Slice | ai.onnx(1-9,10,11-12,13+) | | | Softmax | ai.onnx(1-10,11-12,13+) | | | Split | ai.onnx(1,2-10,11-12,13-17,18+) | | | Sqrt | ai.onnx(6-12,13+) | | | Squeeze | ai.onnx(1-10,11-12,13-20,21+) | | | Sub | ai.onnx(7-12,13,14+) | | | Tan | ai.onnx(7+) | | | Tanh | ai.onnx(6-12,13+) | | | ThresholdedRelu | ai.onnx(10+) | | | Tile | ai.onnx(6-12,13+) | | | Transpose | ai.onnx(1-12,13-20,21+) | need perf optimization | | Unsqueeze | ai.onnx(1-10,11-12,13-20,21+) | | | Where | ai.onnx(9-15,16+) | |