UNPKG

oneie

Version:

Build apps, websites, and AI agents in English. Zero-interaction setup for AI agents (Claude Code, Cursor, Windsurf). Download to your computer, run in the cloud, deploy to the edge. Open source and free forever.

841 lines (675 loc) 30 kB
--- title: Open Agent dimension: things category: plans tags: agent, ai, ai-agent, architecture, frontend related_dimensions: connections, events, groups, knowledge, people scope: global created: 2025-11-03 updated: 2025-11-03 version: 1.0.0 ai_context: | This document is part of the things dimension in the plans category. Location: one/things/plans/open-agent.md Purpose: Documents open-agent assessment & integration plan Related dimensions: connections, events, groups, knowledge, people For AI agents: Read this to understand open agent. --- # Open-Agent Assessment & Integration Plan **Repository**: https://github.com/AFK-surf/open-agent **Purpose**: Assess open-agent codebase and integrate best practices into ONE ## Overview Open-Agent is an open-source agentic AI platform that enables collaborative, multi-model AI agents to perform complex tasks across computers, browsers, and phones. Licensed under Apache 2.0. ### Key Characteristics - **Multi-model integration**: OpenAI, Claude, Gemini, and open-source models - **Technology Stack**: TypeScript (98.9%), Rust (0.4%) - **Deployment**: Docker-based with JSON configuration - **Architecture**: Multi-agent collaboration with modular design ## ONE Architecture Integration Context ### ONE's Three-Layer Architecture ONE uses a **beautiful three-layer separation** with Effect.ts as the glue: ``` Layer 1: Frontend (Astro + React) ↓ Convex hooks, Hono API client Layer 2: Effect.ts Glue Layer (100% business logic) ↓ Services, Providers, Dependency Injection Layer 3: Backend (Hono API + Convex Database) ``` **Key Principles:** - **100% Effect.ts coverage** - All business logic uses Effect.ts (no raw async/await) - **Functional programming** - Pure functions, typed errors, composition, immutability - **6-dimension ontology (organizations, people, things, connections, events, knowledge)** - entities, connections, events, tags (plain Convex schema) - **Service-based architecture** - Effect.ts services with automatic dependency injection - **Multi-provider pattern** - Separate Effect.ts providers per external service ### Mapping Open-Agent to ONE Architecture **Open-Agent Pattern****ONE Implementation** 1. **Multi-model integration** → Effect.ts providers (like multi-chain blockchain) 2. **Agent collaboration** → Effect.ts services orchestrating multiple AI providers 3. **Context engineering** → Service metadata in 6-dimension ontology (organizations, people, things, connections, events, knowledge) 4. **Plugin architecture** → Effect.ts layers for modular services 5. **Task decomposition** → Pure functional composition with Effect.gen ## Assessment Areas ### 1. Architecture & Design Patterns - [ ] Multi-agent collaboration framework → **Map to Effect.ts orchestration services** - [ ] Spec & context engineering approach → **Store in 6-dimension ontology (organizations, people, things, connections, events, knowledge) (metadata)** - [ ] Model integration patterns → **Effect.ts providers per AI model (OpenAI, Claude, Gemini)** - [ ] Modular component structure → **Effect.ts layers and dependency injection** - [ ] Inter-agent communication protocols → **Effect.ts service composition** ### 2. Code Organization - [ ] TypeScript project structure → **Compare with ONE's convex/ structure** - [ ] Configuration management → **JSON config stored in entities table** - [ ] Plugin/extension architecture → **Effect.ts layers for plugins** - [ ] Error handling patterns → **Typed errors with `_tag` pattern (Effect.ts)** - [ ] Type system usage → **Effect.ts type signatures (errors explicit)** ### 3. Best Practices to Adopt - [ ] Pre-commit code checks → **Integrate with ONE's development workflow** - [ ] Docker-based deployment strategy → **Add to ONE deployment options** - [ ] Configuration-driven design → **Store in Convex entities table** - [ ] Multi-model abstraction layer → **Effect.ts providers (like SuiProvider, BaseProvider)** - [ ] Community contribution workflow → **Extend ONE's open-source approach** ### 4. Integration Opportunities for ONE #### High Priority - **Multi-model support**: Abstract model interfaces for swappable AI backends - **Collaboration patterns**: Agent-to-agent communication and task delegation - **Configuration system**: JSON-based configuration for flexibility - **Deployment**: Docker containerization for easy distribution #### Medium Priority - **Pre-commit hooks**: Code quality automation - **Context engineering**: Structured decision-making framework - **Extension system**: Plugin architecture for community contributions #### Low Priority - **Community infrastructure**: Discord/documentation patterns - **Browser/phone integration**: Cross-platform capabilities ## Proposed ONE Multi-Model Architecture ### Pattern: Multi-Model Providers (Mirrors Multi-Chain Pattern) Just as ONE has separate blockchain providers (SuiProvider, BaseProvider, SolanaProvider), we can implement separate AI model providers: ```typescript // convex/services/providers/OpenAIProvider.ts export class OpenAIProvider extends Effect.Service<OpenAIProvider>()( "OpenAIProvider", { effect: Effect.gen(function* () { const config = yield* ConfigService; return { complete: (prompt: string, options?: CompletionOptions) => Effect.gen(function* () { const response = yield* Effect.tryPromise({ try: () => openai.chat.completions.create({ model: options?.model || "gpt-4", messages: [{ role: "user", content: prompt }], temperature: options?.temperature || 0.7, }), catch: (error) => new OpenAIError({ cause: error }), }); return response.choices[0].message.content; }).pipe(Effect.retry({ times: 3 }), Effect.timeout("30 seconds")), embeddings: (text: string) => Effect.gen(function* () { const response = yield* Effect.tryPromise({ try: () => openai.embeddings.create({ model: "text-embedding-3-small", input: text, }), catch: (error) => new OpenAIError({ cause: error }), }); return response.data[0].embedding; }), }; }), }, ) {} // convex/services/providers/ClaudeProvider.ts export class ClaudeProvider extends Effect.Service<ClaudeProvider>()( "ClaudeProvider", { effect: Effect.gen(function* () { const config = yield* ConfigService; return { complete: (prompt: string, options?: CompletionOptions) => Effect.gen(function* () { const response = yield* Effect.tryPromise({ try: () => anthropic.messages.create({ model: options?.model || "claude-sonnet-4", messages: [{ role: "user", content: prompt }], max_tokens: options?.maxTokens || 1024, }), catch: (error) => new ClaudeError({ cause: error }), }); return response.content[0].text; }).pipe(Effect.retry({ times: 3 }), Effect.timeout("30 seconds")), }; }), }, ) {} // convex/services/providers/GeminiProvider.ts export class GeminiProvider extends Effect.Service<GeminiProvider>()( "GeminiProvider", { effect: Effect.gen(function* () { return { complete: (prompt: string, options?: CompletionOptions) => Effect.gen(function* () { const response = yield* Effect.tryPromise({ try: () => gemini.generateContent({ model: options?.model || "gemini-pro", prompt: prompt, }), catch: (error) => new GeminiError({ cause: error }), }); return response.text; }).pipe(Effect.retry({ times: 3 }), Effect.timeout("30 seconds")), }; }), }, ) {} ``` ### Agent Orchestration Service ```typescript // convex/services/agents/AgentOrchestrator.ts export class AgentOrchestrator extends Effect.Service<AgentOrchestrator>()( "AgentOrchestrator", { effect: Effect.gen(function* () { const openai = yield* OpenAIProvider; const claude = yield* ClaudeProvider; const gemini = yield* GeminiProvider; const db = yield* ConvexDatabase; return { // Route to appropriate model based on task type or user preference executeTask: (task: AgentTask) => Effect.gen(function* () { const agent = yield* db.get(task.agentId); // Route based on agent metadata const result = yield* match(agent.metadata.preferredModel) .with("openai", () => openai.complete(task.prompt, task.options)) .with("claude", () => claude.complete(task.prompt, task.options)) .with("gemini", () => gemini.complete(task.prompt, task.options)) .otherwise(() => Effect.fail(new UnsupportedModelError())); // Record event in 6-dimension ontology (organizations, people, things, connections, events, knowledge) yield* db.insert("events", { entityId: task.agentId, eventType: "agent_task_completed", timestamp: Date.now(), metadata: { model: agent.metadata.preferredModel, prompt: task.prompt, result: result.substring(0, 100), // truncated }, }); return result; }).pipe( Effect.catchTags({ OpenAIError: (e) => openai.complete(task.prompt, { model: "gpt-3.5-turbo" }), // fallback ClaudeError: (e) => gemini.complete(task.prompt), // fallback GeminiError: (e) => openai.complete(task.prompt), // fallback }), ), // Multi-agent collaboration (parallel execution) collaborateOnTask: (task: CollaborativeTask) => Effect.gen(function* () { // Execute subtasks in parallel across different models const results = yield* Effect.all( [ openai.complete(task.subtasks[0].prompt), claude.complete(task.subtasks[1].prompt), gemini.complete(task.subtasks[2].prompt), ], { concurrency: 3 }, ); // Synthesize results const synthesis = yield* claude.complete( `Synthesize these perspectives: ${results.join("\n\n")}`, ); return synthesis; }), // Agent-to-agent communication via context engineering delegateTask: ( fromAgent: Id<"entities">, toAgent: Id<"entities">, task: string, ) => Effect.gen(function* () { // Get both agents const source = yield* db.get(fromAgent); const target = yield* db.get(toAgent); // Create connection (delegation relationship) yield* db.insert("connections", { fromEntityId: fromAgent, toEntityId: toAgent, relationshipType: "delegates_to", metadata: { task, timestamp: Date.now() }, }); // Execute on target agent's preferred model const provider = match(target.metadata.preferredModel) .with("openai", () => openai) .with("claude", () => claude) .with("gemini", () => gemini) .exhaustive(); const result = yield* provider.complete(task); // Record delegation event yield* db.insert("events", { entityId: toAgent, eventType: "agent_task_delegated", actorType: "agent", actorId: fromAgent, timestamp: Date.now(), metadata: { task, result: result.substring(0, 100) }, }); return result; }), }; }), dependencies: [ OpenAIProvider.Default, ClaudeProvider.Default, GeminiProvider.Default, ConvexDatabase.Default, ], }, ) {} ``` ### 4-Table Ontology Mapping for Agents **Entities Table:** ```typescript { _id: "agent_123", entityType: "ai_agent", name: "Code Review Agent", metadata: { preferredModel: "claude", // "openai" | "claude" | "gemini" capabilities: ["code_review", "documentation", "testing"], systemPrompt: "You are an expert code reviewer...", temperature: 0.7, maxTokens: 2048, } } ``` **Connections Table:** ```typescript // Agent collaboration { fromEntityId: "agent_123", toEntityId: "agent_456", relationshipType: "collaborates_with", metadata: { taskTypes: ["code_review", "refactoring"] } } // Agent delegation { fromEntityId: "agent_123", toEntityId: "agent_789", relationshipType: "delegates_to", metadata: { task: "Write unit tests", timestamp: 1234567890 } } ``` **Events Table:** ```typescript { entityId: "agent_123", eventType: "agent_task_completed", timestamp: 1234567890, metadata: { model: "claude", prompt: "Review this code...", tokensUsed: 1500, latencyMs: 2300, } } { entityId: "agent_123", eventType: "agent_model_switched", timestamp: 1234567890, metadata: { fromModel: "openai", toModel: "claude", reason: "Rate limit exceeded" } } ``` **New Entity Types for Agents:** - `ai_agent` - Individual AI agent with model preferences - `agent_workflow` - Multi-step agent workflow definition - `agent_context` - Shared context for agent collaboration **New Connection Types:** - `collaborates_with` - Agent-to-agent collaboration - `delegates_to` - Task delegation relationship - `uses_model` - Agent-to-model preference **New Event Types:** - `agent_task_started` - Task execution began - `agent_task_completed` - Task execution finished - `agent_task_failed` - Task execution failed - `agent_model_switched` - Model fallback/switch occurred - `agent_context_updated` - Shared context modified ### Benefits of This Approach **Consistency with ONE's Architecture:** 1. Same pattern as multi-chain blockchain (separate providers per model) 2. All business logic in Effect.ts services (no raw async/await) 3. Typed errors throughout (OpenAIError, ClaudeError, GeminiError) 4. Automatic retry, timeout, fallback via Effect.ts 5. Easy to test (mock providers via Effect layers) **AI-Friendly:** 1. Pure functional composition (predictable) 2. Explicit dependencies (visible in type signatures) 3. Typed errors (exhaustive error handling) 4. Immutable state (no side effects) 5. Composable services (combine agents easily) **Scalability:** 1. Add new models without changing existing code 2. Agent collaboration via service composition 3. Context engineering via 6-dimension ontology (organizations, people, things, connections, events, knowledge) 4. Performance tracking via events table 5. Multi-tenant agent configurations ## Code Deep Dive Tasks ### Phase 1: Discovery 1. Clone repository and examine core architecture clone into /import/open-agent 2. Identify key abstractions and interfaces 3. Map out agent lifecycle and communication flow 4. Analyze model integration patterns ### Phase 2: Pattern Extraction 1. Document reusable design patterns 2. Extract configuration schemas 3. Identify testable components 4. Review error handling strategies ### Phase 3: Integration Planning 1. Map open-agent patterns to ONE architecture 2. Identify conflicts or redundancies 3. Design integration approach 4. Create migration/enhancement roadmap ## Key Questions to Answer ### Open-Agent Implementation Details 1. How does open-agent handle multi-model switching and fallbacks? - **ONE approach**: Effect.ts `catchTags` for typed error handling, automatic fallback to alternative models 2. What is the agent communication protocol? - **ONE approach**: Effect.ts service composition, connections table for delegation tracking 3. How are tasks decomposed and distributed? - **ONE approach**: Pure functional composition with Effect.gen, parallel execution with Effect.all 4. What context management strategies are used? - **ONE approach**: Store in 6-dimension ontology (organizations, people, things, connections, events, knowledge) metadata, immutable state 5. How is state maintained across agent interactions? - **ONE approach**: Events table for audit trail, connections table for relationships 6. What security measures are implemented? - **ONE approach**: Better Auth integration, Convex validation, typed inputs 7. How is the Docker deployment configured? - **ONE approach**: Add to deployment options, keep Cloudflare Pages/Workers primary 8. What testing strategies are employed? - **ONE approach**: Mock Effect layers, unit tests for services, integration tests for Hono routes ### Functional Programming Evaluation Criteria When reviewing open-agent code, assess against ONE's principles: **✅ Good Patterns (Adopt):** - Pure functions (same input → same output) - Immutable data structures - Explicit type signatures - Composable abstractions - Clear error handling **❌ Anti-Patterns (Refactor to Effect.ts):** - Raw async/await in business logic → Effect.ts services - try/catch error handling → Typed errors with `_tag` - Global state mutation → Immutable state in ontology - Imperative loops → Functional composition (map, filter, reduce) - Hidden dependencies → Explicit Effect.ts dependencies **📊 Comparison Matrix:** | Aspect | Open-Agent (Expected) | ONE Architecture | Integration Strategy | | ---------------- | --------------------- | ------------------------------------------------------------------------------------ | ---------------------------------- | | Async handling | async/await | Effect.ts | Wrap in Effect.tryPromise | | Error handling | try/catch | Typed errors | Define error classes with `_tag` | | State management | Variables/objects | 6-dimension ontology (organizations, people, things, connections, events, knowledge) | Map to entities/connections/events | | Model switching | if/switch | Effect.catchTags | Use typed error fallbacks | | Task composition | Promises | Effect.gen | Convert to Effect pipelines | | Dependencies | Imports | Effect DI | Define as Effect services | | Testing | Mocks/stubs | Effect layers | Create test layers | | Configuration | JSON files | Entities table | Store in database | ## Enhancement Roadmap for ONE ### Phase 1: Foundation (1-2 weeks) **Goal**: Implement core multi-model infrastructure following ONE's patterns 1. **Multi-Model Providers** (Effect.ts services) - [ ] Create `OpenAIProvider.ts` (Effect.ts service) - [ ] Create `ClaudeProvider.ts` (Effect.ts service) - [ ] Create `GeminiProvider.ts` (Effect.ts service) - [ ] Define typed errors (OpenAIError, ClaudeError, GeminiError) - [ ] Add retry/timeout/fallback logic per provider - [ ] Write unit tests with mocked Effect layers 2. **4-Table Ontology Extensions** - [ ] Add `ai_agent` entity type to schema - [ ] Add `agent_workflow` entity type - [ ] Add `collaborates_with`, `delegates_to` connection types - [ ] Add `agent_task_*` event types - [ ] Update docs/Ontology.md with agent types 3. **Development Workflow Improvements** - [ ] Analyze open-agent's pre-commit hooks - [ ] Integrate useful checks into ONE's workflow - [ ] Add Docker deployment configuration (optional alternative to Cloudflare) **Files to Create:** ``` convex/services/providers/OpenAIProvider.ts convex/services/providers/ClaudeProvider.ts convex/services/providers/GeminiProvider.ts convex/services/providers/errors.ts convex/services/agents/AgentOrchestrator.ts tests/unit/services/providers/openai.test.ts tests/unit/services/providers/claude.test.ts tests/unit/services/agents/orchestrator.test.ts ``` ### Phase 2: Agent Orchestration (3-4 weeks) **Goal**: Build collaborative multi-agent system with Effect.ts 1. **AgentOrchestrator Service** - [ ] Implement `executeTask` (route to correct model) - [ ] Implement `collaborateOnTask` (parallel execution) - [ ] Implement `delegateTask` (agent-to-agent communication) - [ ] Add automatic fallback on model failures - [ ] Track performance metrics in events table 2. **Context Engineering** - [ ] Design context storage schema (metadata in entities) - [ ] Implement context sharing between agents - [ ] Build context versioning (track in events) - [ ] Add context pruning/optimization strategies 3. **Hono API Routes** - [ ] POST `/api/agents/create` - Create new agent - [ ] POST `/api/agents/:id/execute` - Execute task - [ ] POST `/api/agents/:id/delegate` - Delegate to another agent - [ ] GET `/api/agents/:id/performance` - Get metrics **Files to Create:** ``` convex/services/agents/AgentOrchestrator.ts convex/services/agents/ContextManager.ts convex/mutations/agents.ts convex/queries/agents.ts hono/routes/agents.ts src/components/features/agents/AgentDashboard.tsx src/components/features/agents/AgentExecutor.tsx ``` ### Phase 3: Advanced Features (2-3 months) **Goal**: Complete multi-agent workflows, optimization, extensibility 1. **Workflow Engine** - [ ] Define workflow DSL (stored in `agent_workflow` entities) - [ ] Implement workflow executor (Effect.ts service) - [ ] Support conditional branching, loops, parallel steps - [ ] Add workflow versioning and rollback 2. **Plugin Architecture** - [ ] Design plugin interface (Effect.ts layers) - [ ] Implement plugin discovery/loading - [ ] Create example plugins (custom tools, data sources) - [ ] Document plugin development guide 3. **Performance Optimization** - [ ] Implement intelligent model routing (cost/speed/quality) - [ ] Add response caching (deduplicate similar prompts) - [ ] Build rate limiting per model - [ ] Create observability dashboard (traces, logs, metrics) 4. **Cross-Platform Integration** (from open-agent) - [ ] Browser automation capabilities - [ ] Mobile integration patterns - [ ] Desktop application support **Files to Create:** ``` convex/services/agents/WorkflowEngine.ts convex/services/agents/PluginManager.ts convex/services/agents/CacheManager.ts convex/services/agents/PerformanceOptimizer.ts docs/Agents.md (comprehensive agent documentation) docs/Plugins.md (plugin development guide) ``` ### Success Metrics **Technical Metrics:** - [ ] 100% Effect.ts coverage in agent services (no raw async/await) - [ ] All errors typed with `_tag` pattern - [ ] > 80% unit test coverage for agent services - [ ] <100ms overhead for agent orchestration (excluding model latency) - [ ] Support 3+ AI models with automatic fallback **Feature Metrics:** - [ ] Multi-model task execution working - [ ] Agent collaboration (parallel + delegation) working - [ ] Context sharing between agents - [ ] Workflow engine executing multi-step tasks - [ ] Plugin system allowing community extensions **Integration Metrics:** - [ ] All agent types mapped to 6-dimension ontology (organizations, people, things, connections, events, knowledge) - [ ] All agent operations tracked in events table - [ ] Agent configuration stored in entities table - [ ] Agent collaboration tracked in connections table - [ ] Real-time agent status updates via Convex subscriptions ## Resources & References **Open-Agent:** - Repository: https://github.com/AFK-surf/open-agent - License: Apache 2.0 - Tech Stack: TypeScript (98.9%), Rust (0.4%), Docker - Community: Discord (check repository for link) **ONE Architecture Docs:** - `docs/Architecture.md` - Three-layer architecture, Effect.ts patterns - `docs/Ontology.md` - 6-dimension ontology (organizations, people, things, connections, events, knowledge) (entities, connections, events, tags) - `docs/Hono.md` - Effect.ts services, Hono API routes - `docs/Frontend.md` - Astro + React patterns - `docs/Service Providers.md` - External service integration patterns **Effect.ts Resources:** - Official Docs: https://effect.website - Effect.ts patterns in ONE: See `convex/services/` for examples - Multi-chain example: `convex/services/providers/SuiProvider.ts` (template for AI providers) ## Quick Reference for Developers ### Implementing a New AI Model Provider **Template** (follow existing pattern from SuiProvider/BaseProvider): ```typescript // convex/services/providers/NewModelProvider.ts import { Effect } from "effect"; // 1. Define typed error export class NewModelError extends Data.TaggedError("NewModelError")<{ cause: unknown; }> {} // 2. Create Effect.ts service export class NewModelProvider extends Effect.Service<NewModelProvider>()( "NewModelProvider", { effect: Effect.gen(function* () { const config = yield* ConfigService; return { complete: (prompt: string, options?: CompletionOptions) => Effect.gen(function* () { const response = yield* Effect.tryPromise({ try: () => /* API call */, catch: (error) => new NewModelError({ cause: error }), }); return response.text; }).pipe( Effect.retry({ times: 3 }), Effect.timeout("30 seconds") ), }; }), dependencies: [ConfigService.Default], } ) {} ``` ### Adding Agent to 4-Table Ontology **Entity:** ```typescript await ctx.db.insert("entities", { entityType: "ai_agent", name: "My Agent", metadata: { preferredModel: "claude", systemPrompt: "...", capabilities: ["code", "writing"], }, }); ``` **Connection (collaboration):** ```typescript await ctx.db.insert("connections", { fromEntityId: agent1Id, toEntityId: agent2Id, relationshipType: "collaborates_with", metadata: { taskTypes: ["code_review"] }, }); ``` **Event (task completion):** ```typescript await ctx.db.insert("events", { entityId: agentId, eventType: "agent_task_completed", timestamp: Date.now(), metadata: { model: "claude", tokensUsed: 1500 }, }); ``` ### Testing Agent Services **Unit Test Template:** ```typescript import { Effect, Layer } from "effect"; describe("AgentOrchestrator", () => { it("should execute task with correct model", async () => { // Mock providers const MockClaude = Layer.succeed(ClaudeProvider, { complete: () => Effect.succeed("response"), }); const TestLayer = Layer.mergeAll(MockClaude /* ... */); // Run test const result = await Effect.runPromise( Effect.gen(function* () { const orchestrator = yield* AgentOrchestrator; return yield* orchestrator.executeTask(task); }).pipe(Effect.provide(TestLayer)), ); expect(result).toBe("response"); }); }); ``` ## Notes & Observations ### Key Insights from ONE Architecture Review 1. **Effect.ts is non-negotiable** - 100% coverage means ALL business logic, including agent orchestration 2. **Multi-provider pattern is proven** - Same pattern used for multi-chain blockchain works perfectly for multi-model AI 3. **6-dimension ontology (organizations, people, things, connections, events, knowledge) is flexible** - Can model complex agent relationships without schema changes 4. **Typed errors everywhere** - No try/catch, all errors explicit in type signatures 5. **Composition over configuration** - Services compose naturally, no complex config files needed ### What to Look for in Open-Agent Codebase **✅ Patterns to Adopt:** - Context management strategies - Multi-agent communication protocols - Task decomposition approaches - Model selection heuristics - Performance optimization techniques **⚠️ Patterns to Adapt (refactor to Effect.ts):** - Any raw async/await → Effect.gen - Any try/catch → typed errors with catchTags - Any global state → 6-dimension ontology (organizations, people, things, connections, events, knowledge) - Any imperative loops → functional composition - Any hidden dependencies → explicit Effect services ### Next Steps After Cloning 1. **Map their architecture to ours:** - Their agent system → Our AgentOrchestrator service - Their model switching → Our multi-provider pattern - Their state → Our 6-dimension ontology (organizations, people, things, connections, events, knowledge) - Their config → Our entities table metadata 2. **Extract patterns, not code:** - Don't copy their implementation verbatim - Understand their approach, implement in Effect.ts - Maintain ONE's architectural consistency - All business logic must be pure functional 3. **Document learnings:** - Update this file with observations - Create docs/Agents.md with implementation guide - Add examples to docs/Patterns.md - Update docs/Ontology.md with agent types --- **Status**: Enhanced Plan Complete - Ready for Phase 1 Discovery **Last Updated**: 2025-10-10 **Next Action**: Clone repository to `/import/open-agent` and begin Phase 1 analysis