UNPKG

o1js

Version:

TypeScript framework for zk-SNARKs and zkApps

365 lines (331 loc) 10.8 kB
import { CurveParams, CurveAffine, createCurveAffine, } from '../../../bindings/crypto/elliptic-curve.js'; import type { Group } from '../group.js'; import { ProvablePureExtended } from '../types/struct.js'; import { AlmostForeignField, createForeignField } from '../foreign-field.js'; import { EllipticCurve, Point } from '../gadgets/elliptic-curve.js'; import { Field3 } from '../gadgets/foreign-field.js'; import { assert } from '../gadgets/common.js'; import { Provable } from '../provable.js'; import { provableFromClass } from '../types/provable-derivers.js'; import { multiRangeCheck } from '../gadgets/range-check.js'; // external API export { createForeignCurve, createForeignCurveV2, ForeignCurve, ForeignCurveV2, }; // internal API export { toPoint, FlexiblePoint }; type FlexiblePoint = { x: AlmostForeignField | Field3 | bigint | number; y: AlmostForeignField | Field3 | bigint | number; }; function toPoint({ x, y }: ForeignCurve): Point { return { x: x.value, y: y.value }; } /** * @deprecated `ForeignCurve` is now deprecated and will be removed in a future release. Please use {@link ForeignCurveV2} instead. */ class ForeignCurve { x: AlmostForeignField; y: AlmostForeignField; /** * Create a new {@link ForeignCurve} from an object representing the (affine) x and y coordinates. * * @example * ```ts * let x = new ForeignCurve({ x: 1n, y: 1n }); * ``` * * **Important**: By design, there is no way for a `ForeignCurve` to represent the zero point. * * **Warning**: This fails for a constant input which does not represent an actual point on the curve. */ constructor(g: { x: AlmostForeignField | Field3 | bigint | number; y: AlmostForeignField | Field3 | bigint | number; }) { this.x = new this.Constructor.Field(g.x); this.y = new this.Constructor.Field(g.y); // don't allow constants that aren't on the curve if (this.isConstant()) { this.assertOnCurve(); this.assertInSubgroup(); } } /** * Coerce the input to a {@link ForeignCurve}. */ static from(g: ForeignCurve | FlexiblePoint) { if (g instanceof this) return g; return new this(g); } /** * The constant generator point. */ static get generator() { return new this(this.Bigint.one); } /** * The size of the curve's base field. */ static get modulus() { return this.Bigint.modulus; } /** * The size of the curve's base field. */ get modulus() { return this.Constructor.Bigint.modulus; } /** * Checks whether this curve point is constant. * * See {@link FieldVar} to understand constants vs variables. */ isConstant() { return Provable.isConstant(this.Constructor.provable, this); } /** * Convert this curve point to a point with bigint coordinates. */ toBigint() { return this.Constructor.Bigint.fromNonzero({ x: this.x.toBigInt(), y: this.y.toBigInt(), }); } /** * Elliptic curve addition. * * ```ts * let r = p.add(q); // r = p + q * ``` * * **Important**: this is _incomplete addition_ and does not handle the degenerate cases: * - Inputs are equal, `g = h` (where you would use {@link double}). * In this case, the result of this method is garbage and can be manipulated arbitrarily by a malicious prover. * - Inputs are inverses of each other, `g = -h`, so that the result would be the zero point. * In this case, the proof fails. * * If you want guaranteed soundness regardless of the input, use {@link addSafe} instead. * * @throws if the inputs are inverses of each other. */ add(h: ForeignCurve | FlexiblePoint) { let Curve = this.Constructor.Bigint; let h_ = this.Constructor.from(h); let p = EllipticCurve.add(toPoint(this), toPoint(h_), Curve); return new this.Constructor(p); } /** * Safe elliptic curve addition. * * This is the same as {@link add}, but additionally proves that the inputs are not equal. * Therefore, the method is guaranteed to either fail or return a valid addition result. * * **Beware**: this is more expensive than {@link add}, and is still incomplete in that * it does not succeed on equal or inverse inputs. * * @throws if the inputs are equal or inverses of each other. */ addSafe(h: ForeignCurve | FlexiblePoint) { let h_ = this.Constructor.from(h); // prove that we have x1 != x2 => g != +-h let x1 = this.x.assertCanonical(); let x2 = h_.x.assertCanonical(); x1.equals(x2).assertFalse(); return this.add(h_); } /** * Elliptic curve doubling. * * @example * ```ts * let r = p.double(); // r = 2 * p * ``` */ double() { let Curve = this.Constructor.Bigint; let p = EllipticCurve.double(toPoint(this), Curve); return new this.Constructor(p); } /** * Elliptic curve negation. * * @example * ```ts * let r = p.negate(); // r = -p * ``` */ negate(): ForeignCurve { return new this.Constructor({ x: this.x, y: this.y.neg() }); } /** * Elliptic curve scalar multiplication, where the scalar is represented as a {@link ForeignField} element. * * **Important**: this proves that the result of the scalar multiplication is not the zero point. * * @throws if the scalar multiplication results in the zero point; for example, if the scalar is zero. * * @example * ```ts * let r = p.scale(s); // r = s * p * ``` */ scale(scalar: AlmostForeignField | bigint | number) { let Curve = this.Constructor.Bigint; let scalar_ = this.Constructor.Scalar.from(scalar); let p = EllipticCurve.scale(scalar_.value, toPoint(this), Curve); return new this.Constructor(p); } static assertOnCurve(g: ForeignCurve) { EllipticCurve.assertOnCurve(toPoint(g), this.Bigint); } /** * Assert that this point lies on the elliptic curve, which means it satisfies the equation * `y^2 = x^3 + ax + b` */ assertOnCurve() { this.Constructor.assertOnCurve(this); } static assertInSubgroup(g: ForeignCurve) { if (this.Bigint.hasCofactor) { EllipticCurve.assertInSubgroup(toPoint(g), this.Bigint); } } /** * Assert that this point lies in the subgroup defined by `order*P = 0`. * * Note: this is a no-op if the curve has cofactor equal to 1. Otherwise * it performs the full scalar multiplication `order*P` and is expensive. */ assertInSubgroup() { this.Constructor.assertInSubgroup(this); } /** * Check that this is a valid element of the target subgroup of the curve: * - Check that the coordinates are valid field elements * - Use {@link assertOnCurve()} to check that the point lies on the curve * - If the curve has cofactor unequal to 1, use {@link assertInSubgroup()}. */ static check(g: ForeignCurve) { // more efficient than the automatic check, which would do this for each field separately this.Field.assertAlmostReduced(g.x, g.y); this.assertOnCurve(g); this.assertInSubgroup(g); } // dynamic subclassing infra get Constructor() { return this.constructor as typeof ForeignCurve; } static _Bigint?: CurveAffine; static _Field?: typeof AlmostForeignField; static _Scalar?: typeof AlmostForeignField; static _provable?: ProvablePureExtended< ForeignCurve, { x: bigint; y: bigint }, { x: string; y: string } >; /** * Curve arithmetic on JS bigints. */ static get Bigint() { assert(this._Bigint !== undefined, 'ForeignCurve not initialized'); return this._Bigint; } /** * The base field of this curve as a {@link ForeignField}. */ static get Field() { assert(this._Field !== undefined, 'ForeignCurve not initialized'); return this._Field; } /** * The scalar field of this curve as a {@link ForeignField}. */ static get Scalar() { assert(this._Scalar !== undefined, 'ForeignCurve not initialized'); return this._Scalar; } /** * `Provable<ForeignCurve>` */ static get provable() { assert(this._provable !== undefined, 'ForeignCurve not initialized'); return this._provable; } } class ForeignCurveV2 extends ForeignCurve { constructor(g: { x: AlmostForeignField | Field3 | bigint | number; y: AlmostForeignField | Field3 | bigint | number; }) { super(g); } static check(g: ForeignCurveV2) { multiRangeCheck(g.x.value); multiRangeCheck(g.y.value); // more efficient than the automatic check, which would do this for each field separately this.Field.assertAlmostReduced(g.x, g.y); this.assertOnCurve(g); this.assertInSubgroup(g); } } /** * @deprecated `createForeignCurve` is now deprecated and will be removed in a future release. Please use {@link createForeignCurveV2} instead. */ function createForeignCurve(params: CurveParams): typeof ForeignCurve { const FieldUnreduced = createForeignField(params.modulus); const ScalarUnreduced = createForeignField(params.order); class Field extends FieldUnreduced.AlmostReduced {} class Scalar extends ScalarUnreduced.AlmostReduced {} const BigintCurve = createCurveAffine(params); class Curve extends ForeignCurve { static _Bigint = BigintCurve; static _Field = Field; static _Scalar = Scalar; static _provable = provableFromClass(Curve, { x: Field.provable, y: Field.provable, }); } return Curve; } /** * Create a class representing an elliptic curve group, which is different from the native {@link Group}. * * ```ts * const Curve = createForeignCurve(Crypto.CurveParams.Secp256k1); * ``` * * `createForeignCurve(params)` takes curve parameters {@link CurveParams} as input. * We support `modulus` and `order` to be prime numbers up to 259 bits. * * The returned {@link ForeignCurveV2} class represents a _non-zero curve point_ and supports standard * elliptic curve operations like point addition and scalar multiplication. * * {@link ForeignCurveV2} also includes to associated foreign fields: `ForeignCurve.Field` and `ForeignCurve.Scalar`, see {@link createForeignFieldV2}. */ function createForeignCurveV2(params: CurveParams): typeof ForeignCurveV2 { const FieldUnreduced = createForeignField(params.modulus); const ScalarUnreduced = createForeignField(params.order); class Field extends FieldUnreduced.AlmostReduced {} class Scalar extends ScalarUnreduced.AlmostReduced {} const BigintCurve = createCurveAffine(params); class Curve extends ForeignCurveV2 { static _Bigint = BigintCurve; static _Field = Field; static _Scalar = Scalar; static _provable = provableFromClass(Curve, { x: Field.provable, y: Field.provable, }); } return Curve; }