UNPKG

o1js

Version:

TypeScript framework for zk-SNARKs and zkApps

183 lines (155 loc) 5.55 kB
export { sha256Bigint, generateRsaParams, rsaSign, randomPrime }; /** * Generates an RSA signature for the given message using the private key and modulus. * @param message - The message to be signed. * @param privateKey - The private exponent used for signing. * @param modulus - The modulus used for signing. * @returns The RSA signature of the message. */ function rsaSign(message: bigint, privateKey: bigint, modulus: bigint): bigint { // Calculate the signature using modular exponentiation return power(message, privateKey, modulus); } /** * Generates a SHA-256 digest of the input message and returns the hash as a native bigint. * @param message - The input message to be hashed. * @returns The SHA-256 hash of the input message as a native bigint. */ async function sha256Bigint(message: string) { let messageBytes = new TextEncoder().encode(message); let digestBytes = new Uint8Array( await crypto.subtle.digest('SHA-256', messageBytes) ); return bytesToBigint(digestBytes); } /** * Generates RSA parameters including prime numbers, public exponent, and private exponent. * @param bitSize - The bit size of the prime numbers used for generating the RSA parameters. * @returns An object containing the RSA parameters: * `n` (modulus), `e` (public exponent), `d` (private exponent). */ function generateRsaParams(bitSize: number) { // Generate two random prime numbers const p = randomPrime(bitSize / 2); const q = randomPrime(bitSize / 2); // Public exponent const e = 65537n; // Euler's totient function const phiN = (p - 1n) * (q - 1n); // Private exponent const d = inverse(e, phiN); return { n: p * q, e, d }; } // random primes /** * returns a random prime of a given bit length (which is a multiple of 8) */ function randomPrime(bitLength: number) { if (bitLength < 1) throw Error('bitLength must be at least 1'); if (bitLength % 8 !== 0) throw Error('bitLength must be a multiple of 8'); let byteLength = bitLength / 8; while (true) { let p = randomBigintLength(byteLength); // enforce p has the full length p |= 1n << BigInt(bitLength - 1); if (millerRabinTest(p) === 'probably prime') return p; } } // primality test // after https://en.wikipedia.org/wiki/Miller%E2%80%93Rabin_primality_test#Miller%E2%80%93Rabin_test function millerRabinTest(n: bigint): 'composite' | 'probably prime' { const k = 10; if (n === 2n || n === 3n) return 'probably prime'; if (n < 2n) return 'composite'; // check if divisible by one of first few primes for (let p of knownPrimes) { if (n % p === 0n && n > p) return 'composite'; } // write n - 1 = 2^r * d, d odd let d = n - 1n; let r = 0n; for (; d % 2n !== 0n; d /= 2n, r++); WitnessLoop: for (let i = 0; i < k; i++) { let a = randomBigintRange(2n, n - 2n); let x = power(a, d, n); if (x === 1n || x === n - 1n) continue; for (let i = 0; i + 1 < r; i++) { x = (x * x) % n; if (x === n - 1n) continue WitnessLoop; } return 'composite'; } return 'probably prime'; } // bigint helpers // random bigint in [min, max] function randomBigintRange(min: bigint, max: bigint) { let length = byteLength(max - min); while (true) { let n = randomBigintLength(length); if (n <= max - min) return min + n; } } // random bigint in [0, 2^(8*byteLength)) function randomBigintLength(byteLength: number) { let bytes = crypto.getRandomValues(new Uint8Array(byteLength)); return bytesToBigint(bytes); } function bytesToBigint(bytes: Uint8Array | number[]) { let x = 0n; let bitPosition = 0n; for (let byte of bytes) { x += BigInt(byte) << bitPosition; bitPosition += 8n; } return x; } function byteLength(x: bigint) { return Math.ceil(x.toString(16).length / 2); } // finite field helpers (copied here from src/bindings/crypto/finite-field.ts) // modular exponentiation, a^n % p function power(a: bigint, n: bigint, p: bigint) { a = mod(a, p); let x = 1n; for (; n > 0n; n >>= 1n) { if (n & 1n) x = mod(x * a, p); a = mod(a * a, p); } return x; } // modular inverse, 1/a in Z_p function inverse(a: bigint, p: bigint) { a = mod(a, p); if (a === 0n) throw Error('modular inverse: division by 0'); let b = p; let [x, y, u, v] = [0n, 1n, 1n, 0n]; while (a !== 0n) { let q = b / a; [b, a] = [a, b - a * q]; [x, u] = [u, x - u * q]; [y, v] = [v, y - v * q]; } if (b !== 1n) throw Error('modular inverse failed (b != 1)'); return mod(x, p); } function mod(x: bigint, p: bigint) { x = x % p; if (x < 0) return x + p; return x; } // primes up to 1000, to speed up miller-rabin // prettier-ignore let knownPrimes = [ 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241, 251, 257, 263, 269, 271, 277, 281, 283, 293, 307, 311, 313, 317, 331, 337, 347, 349, 353, 359, 367, 373, 379, 383, 389, 397, 401, 409, 419, 421, 431, 433, 439, 443, 449, 457, 461, 463, 467, 479, 487, 491, 499, 503, 509, 521, 523, 541, 547, 557, 563, 569, 571, 577, 587, 593, 599, 601, 607, 613, 617, 619, 631, 641, 643, 647, 653, 659, 661, 673, 677, 683, 691, 701, 709, 719, 727, 733, 739, 743, 751, 757, 761, 769, 773, 787, 797, 809, 811, 821, 823, 827, 829, 839, 853, 857, 859, 863, 877, 881, 883, 887, 907, 911, 919, 929, 937, 941, 947, 953, 967, 971, 977, 983, 991, 997 ].map(BigInt);