normalize-samples
Version:
Normalize a sample drawn from different populations and convert into a Z-score
67 lines (52 loc) • 1.47 kB
JavaScript
const ztable = require('ztable')
function average(numbers) {
let total = 0
for(const i of numbers) {
total += i
}
return (total / numbers.length)
}
module.exports = function(samples) {
const categories = Object.keys(samples)
let normalized = [ ]
for(const category of categories) {
const sample = samples[category]
if((typeof sample.mean !== 'number') || (typeof sample.sd !== 'number')) {
throw new Error('Mean and standard deviation (sd) must be of type `number`')
}
const data = [ ].concat(sample.sample)
// Normalize each member of the sample based on its population mean and sd
for(let i = 0; i < data.length; i ++) {
const num = data[i]
data[i] = (num - sample.mean) / sample.sd
}
normalized = normalized.concat(data)
}
const mean = average(normalized)
const standardError = 1 / Math.sqrt(normalized.length)
let zScore = Math.round((mean / standardError) * 1000000) / 1000000
// account for -0
if(zScore === 0) {
zScore = 0
}
const marginOfError95 = 1.96 * standardError
const marginOfError98 = 2.33 * standardError
const createInterval = marginOfError => {
return {
low: mean - marginOfError,
high: mean + marginOfError,
marginOfError
}
}
return {
samples: normalized,
mean,
standardError,
zScore,
proportion: ztable(zScore),
n: normalized.length,
confidenceInterval95: createInterval(marginOfError95),
confidenceInterval98: createInterval(marginOfError98)
}
}