node-red-contrib-tak-registration
Version:
A Node-RED node to register to TAK and to help wrap files as datapackages to send to TAK
34 lines (31 loc) • 1.5 kB
TypeScript
import { GeoJsonProperties, FeatureCollection, Point } from 'geojson';
type KmeansProps = GeoJsonProperties & {
cluster?: number;
centroid?: [number, number];
};
/**
* Takes a set of {@link Point|points} and partition them into clusters using the k-mean .
* It uses the [k-means algorithm](https://en.wikipedia.org/wiki/K-means_clustering)
*
* @function
* @param {FeatureCollection<Point>} points to be clustered
* @param {Object} [options={}] Optional parameters
* @param {number} [options.numberOfClusters=Math.sqrt(numberOfPoints/2)] numberOfClusters that will be generated
* @param {boolean} [options.mutate=false] allows GeoJSON input to be mutated (significant performance increase if true)
* @returns {FeatureCollection<Point>} Clustered Points with an additional two properties associated to each Feature:
* - {number} cluster - the associated clusterId
* - {[number, number]} centroid - Centroid of the cluster [Longitude, Latitude]
* @example
* // create random points with random z-values in their properties
* var points = turf.randomPoint(100, {bbox: [0, 30, 20, 50]});
* var options = {numberOfClusters: 7};
* var clustered = turf.clustersKmeans(points, options);
*
* //addToMap
* var addToMap = [clustered];
*/
declare function clustersKmeans(points: FeatureCollection<Point>, options?: {
numberOfClusters?: number;
mutate?: boolean;
}): FeatureCollection<Point, KmeansProps>;
export { type KmeansProps, clustersKmeans, clustersKmeans as default };