node-red-contrib-tak-registration
Version:
A Node-RED node to register to TAK and to help wrap files as datapackages to send to TAK
91 lines (54 loc) • 3.21 kB
Markdown
# @turf/clusters-dbscan
<!-- Generated by documentation.js. Update this documentation by updating the source code. -->
## Dbscan
Point classification within the cluster.
Type: (`"core"` | `"edge"` | `"noise"`)
## DbscanProps
**Extends GeoJsonProperties**
Properties assigned to each clustered point.
Type: [object][1]
### Properties
* `dbscan` **[Dbscan][2]?** type of point it has been classified as
* `cluster` **[number][3]?** associated clusterId
## clustersDbscan
Takes a set of [points][4] and partition them into clusters according to [DBSCAN's][5] data clustering algorithm.
### Parameters
* `points` **[FeatureCollection][6]<[Point][4]>** to be clustered
* `maxDistance` **[number][3]** Maximum Distance between any point of the cluster to generate the clusters (kilometers by default, see options)
* `options` **[Object][1]** Optional parameters (optional, default `{}`)
* `options.units` **[string][7]** in which `maxDistance` is expressed, can be degrees, radians, miles, or kilometers (optional, default `"kilometers"`)
* `options.mutate` **[boolean][8]** Allows GeoJSON input to be mutated (optional, default `false`)
* `options.minPoints` **[number][3]** Minimum number of points to generate a single cluster,
points which do not meet this requirement will be classified as an 'edge' or 'noise'. (optional, default `3`)
### Examples
```javascript
// create random points with random z-values in their properties
var points = turf.randomPoint(100, {bbox: [0, 30, 20, 50]});
var maxDistance = 100;
var clustered = turf.clustersDbscan(points, maxDistance);
//addToMap
var addToMap = [clustered];
```
Returns **[FeatureCollection][6]<[Point][4], [DbscanProps][9]>** Clustered Points with an additional two properties associated to each Feature:* {number} cluster - the associated clusterId
* {string} dbscan - type of point it has been classified as ('core'|'edge'|'noise')
[1]: https://developer.mozilla.org/docs/Web/JavaScript/Reference/Global_Objects/Object
[2]: #dbscan
[3]: https://developer.mozilla.org/docs/Web/JavaScript/Reference/Global_Objects/Number
[4]: https://tools.ietf.org/html/rfc7946#section-3.1.2
[5]: https://en.wikipedia.org/wiki/DBSCAN
[6]: https://tools.ietf.org/html/rfc7946#section-3.3
[7]: https://developer.mozilla.org/docs/Web/JavaScript/Reference/Global_Objects/String
[8]: https://developer.mozilla.org/docs/Web/JavaScript/Reference/Global_Objects/Boolean
[9]: #dbscanprops
<!-- This file is automatically generated. Please don't edit it directly. If you find an error, edit the source file of the module in question (likely index.js or index.ts), and re-run "yarn docs" from the root of the turf project. -->
---
This module is part of the [Turfjs project](https://turfjs.org/), an open source module collection dedicated to geographic algorithms. It is maintained in the [Turfjs/turf](https://github.com/Turfjs/turf) repository, where you can create PRs and issues.
### Installation
Install this single module individually:
```sh
$ npm install @turf/clusters-dbscan
```
Or install the all-encompassing @turf/turf module that includes all modules as functions:
```sh
$ npm install @turf/turf
```