node-red-contrib-tak-registration
Version:
A Node-RED node to register to TAK and to help wrap files as datapackages to send to TAK
38 lines (37 loc) • 1.59 kB
TypeScript
import { Feature, FeatureCollection, Point } from "@turf/helpers";
/**
* calcualte the Minkowski p-norm distance between two features.
* @param feature1 point feature
* @param feature2 point feature
* @param p p-norm 1=<p<=infinity 1: Manhattan distance 2: Euclidean distance
*/
export declare function pNormDistance(feature1: Feature<Point>, feature2: Feature<Point>, p?: number): number;
/**
*
*
* @name distanceWeight
* @param {FeatureCollection<any>} fc FeatureCollection.
* @param {Object} [options] option object.
* @param {number} [options.threshold=10000] If the distance between neighbor and
* target features is greater than threshold, the weight of that neighbor is 0.
* @param {number} [options.p=2] Minkowski p-norm distance parameter.
* 1: Manhattan distance. 2: Euclidean distance. 1=<p<=infinity.
* @param {boolean} [options.binary=false] If true, weight=1 if d <= threshold otherwise weight=0.
* If false, weight=Math.pow(d, alpha).
* @param {number} [options.alpha=-1] distance decay parameter.
* A big value means the weight decay quickly as distance increases.
* @param {boolean} [options.standardization=false] row standardization.
* @returns {Array<Array<number>>} distance weight matrix.
* @example
*
* var bbox = [-65, 40, -63, 42];
* var dataset = turf.randomPoint(100, { bbox: bbox });
* var result = turf.distanceWeight(dataset);
*/
export default function distanceWeight(fc: FeatureCollection<any>, options?: {
threshold?: number;
p?: number;
binary?: boolean;
alpha?: number;
standardization?: boolean;
}): number[][];