node-red-contrib-tak-registration
Version:
A Node-RED node to register to TAK and to help wrap files as datapackages to send to TAK
36 lines (35 loc) • 1.83 kB
TypeScript
import { Properties, Units, FeatureCollection, Point } from "@turf/helpers";
export declare type Dbscan = "core" | "edge" | "noise";
export declare type DbscanProps = Properties & {
dbscan?: Dbscan;
cluster?: number;
};
/**
* Takes a set of {@link Point|points} and partition them into clusters according to {@link DBSCAN's|https://en.wikipedia.org/wiki/DBSCAN} data clustering algorithm.
*
* @name clustersDbscan
* @param {FeatureCollection<Point>} points to be clustered
* @param {number} maxDistance Maximum Distance between any point of the cluster to generate the clusters (kilometers only)
* @param {Object} [options={}] Optional parameters
* @param {string} [options.units="kilometers"] in which `maxDistance` is expressed, can be degrees, radians, miles, or kilometers
* @param {boolean} [options.mutate=false] Allows GeoJSON input to be mutated
* @param {number} [options.minPoints=3] Minimum number of points to generate a single cluster,
* points which do not meet this requirement will be classified as an 'edge' or 'noise'.
* @returns {FeatureCollection<Point>} Clustered Points with an additional two properties associated to each Feature:
* - {number} cluster - the associated clusterId
* - {string} dbscan - type of point it has been classified as ('core'|'edge'|'noise')
* @example
* // create random points with random z-values in their properties
* var points = turf.randomPoint(100, {bbox: [0, 30, 20, 50]});
* var maxDistance = 100;
* var clustered = turf.clustersDbscan(points, maxDistance);
*
* //addToMap
* var addToMap = [clustered];
*/
declare function clustersDbscan(points: FeatureCollection<Point>, maxDistance: number, options?: {
units?: Units;
minPoints?: number;
mutate?: boolean;
}): FeatureCollection<Point, DbscanProps>;
export default clustersDbscan;