UNPKG

node-nlp

Version:

Library for NLU (Natural Language Understanding) done in Node.js

160 lines (152 loc) 4.95 kB
/* * Copyright (c) AXA Shared Services Spain S.A. * * Permission is hereby granted, free of charge, to any person obtaining * a copy of this software and associated documentation files (the * "Software"), to deal in the Software without restriction, including * without limitation the rights to use, copy, modify, merge, publish, * distribute, sublicense, and/or sell copies of the Software, and to * permit persons to whom the Software is furnished to do so, subject to * the following conditions: * * The above copyright notice and this permission notice shall be * included in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE * LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION * OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION * WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ const { BayesClassifier } = require('../../lib'); function getClassifier2() { const classifier = new BayesClassifier({}); classifier.addObservation([1, 1, 1, 0, 0, 0], 'one'); classifier.addObservation([1, 0, 1, 0, 0, 0], 'one'); classifier.addObservation([1, 1, 1, 0, 0, 0], 'one'); classifier.addObservation([1, 1, 1, 1, 0, 0], 'one'); classifier.addObservation([0, 0, 0, 1, 1, 1], 'two'); classifier.addObservation([0, 0, 0, 1, 0, 1], 'two'); classifier.addObservation([0, 0, 0, 1, 1, 0], 'two'); return classifier; } function addObservations3a(classifier) { classifier.addObservation([1, 1, 1, 0, 0, 0, 0, 0, 0], 'one'); classifier.addObservation([1, 0, 1, 0, 0, 0, 0, 0, 0], 'one'); classifier.addObservation([1, 1, 1, 0, 0, 0, 0, 0, 0], 'one'); classifier.addObservation([0, 0, 0, 1, 1, 1, 0, 0, 0], 'two'); classifier.addObservation([0, 0, 0, 1, 0, 1, 0, 0, 0], 'two'); classifier.addObservation([0, 0, 0, 1, 1, 0, 0, 0, 0], 'two'); } function addObservations3b(classifier) { classifier.addObservation([0, 0, 0, 0, 0, 0, 1, 1, 1], 'three'); classifier.addObservation([0, 0, 0, 0, 0, 0, 1, 0, 1], 'three'); classifier.addObservation([0, 0, 0, 0, 0, 0, 1, 1, 0], 'three'); } function getClassifier3() { const classifier = new BayesClassifier({}); addObservations3a(classifier); addObservations3b(classifier); return classifier; } describe('Get classifications', () => { test('Should get correct clasifications for basic examples', () => { const classifier = getClassifier2(); const classifications1 = classifier.getClassifications([1, 1, 1, 0, 0, 0]); expect(classifications1).toHaveLength(2); expect(classifications1[0].label).toEqual('one'); expect(classifications1[1].label).toEqual('two'); const classifications2 = classifier.getClassifications([0, 0, 0, 0, 1, 1]); expect(classifications2).toHaveLength(2); expect(classifications2[0].label).toEqual('two'); expect(classifications2[1].label).toEqual('one'); }); test('Should get correct clasifications for more complex examples', () => { const classifier = getClassifier3(); const classifications1 = classifier.getClassifications([ 1, 1, 0, 0, 0, 0, 1, 0, 0, ]); expect(classifications1).toHaveLength(3); expect(classifications1[0].label).toEqual('one'); const classifications2 = classifier.getClassifications([ 0, 0, 1, 1, 1, 0, 0, 0, 1, ]); expect(classifications2).toHaveLength(3); expect(classifications2[0].label).toEqual('two'); const classifications3 = classifier.getClassifications([ 1, 0, 0, 0, 1, 0, 0, 1, 1, ]); expect(classifications3).toHaveLength(3); expect(classifications3[0].label).toEqual('three'); }); test('Smoothing can be changed', () => { const classifier = getClassifier3(); classifier.setSmoothing(0.5); expect(classifier.smoothing).toEqual(0.5); const classifications1 = classifier.getClassifications([ 1, 1, 0, 0, 0, 0, 1, 0, 0, ]); expect(classifications1).toHaveLength(3); expect(classifications1[0].label).toEqual('one'); const classifications2 = classifier.getClassifications([ 0, 0, 1, 1, 1, 0, 0, 0, 1, ]); expect(classifications2).toHaveLength(3); expect(classifications2[0].label).toEqual('two'); const classifications3 = classifier.getClassifications([ 1, 0, 0, 0, 1, 0, 0, 1, 1, ]); expect(classifications3).toHaveLength(3); expect(classifications3[0].label).toEqual('three'); }); });