UNPKG

node-nlp

Version:

Library for NLU (Natural Language Understanding) done in Node.js

385 lines (374 loc) 12.3 kB
/* * Copyright (c) AXA Shared Services Spain S.A. * * Permission is hereby granted, free of charge, to any person obtaining * a copy of this software and associated documentation files (the * "Software"), to deal in the Software without restriction, including * without limitation the rights to use, copy, modify, merge, publish, * distribute, sublicense, and/or sell copies of the Software, and to * permit persons to whom the Software is furnished to do so, subject to * the following conditions: * * The above copyright notice and this permission notice shall be * included in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE * LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION * OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION * WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ /** * Class for checking similarity between strings, or search the more similar * substring inside an string. */ class SimilarSearch { /** * Constructor of the class. Does the basic initializations. */ constructor(settings) { this.settings = settings || {}; this.alphanumeric = this.settings.alphanumeric || new RegExp(/[a-zA-ZÁÉÍÓÚáéíóúÀÈÌÒÙàèìòùÄËÏÖÜäëïöüÂÊÎÔÛâêîôû0-9]/); this.collator = this.settings.collator || Intl.Collator('generic', { sensitivity: 'base' }); this.useCollator = this.settings.useCollator === undefined ? false : this.settings.useCollator; this.normalize = this.settings.normalize === undefined ? false : this.settings.normalize; } /** * Calculates the levenshtein distance between two strings. * @param {String} str1 First String. * @param {String} str2 Second String. * @returns {Number} Levenshtein distance. */ getSimilarity(str1, str2) { if (this.normalize) { /* eslint-disable */ str1 = str1 .normalize("NFD") .replace(/[\u0300-\u036f]/g, "") .toLowerCase(); str2 = str2 .normalize("NFD") .replace(/[\u0300-\u036f]/g, "") .toLowerCase(); /* eslint-enable */ } if (str1 === str2) { return 0; } const str1len = str1.length; const str2len = str2.length; if (str1len === 0) return str2len; if (str2len === 0) return str1len; const prevRow = []; const str2Char = []; const str2CharAt = []; let curCol; let nextCol; let tmp; if (this.useCollator) { for (let i = 0; i < str2len; i += 1) { prevRow[i] = i; str2CharAt[i] = str2.charAt(i); } } else { for (let i = 0; i < str2len; i += 1) { prevRow[i] = i; str2Char[i] = str2.charCodeAt(i); } } prevRow[str2len] = str2len; let strCmp; let j; for (let i = 0; i < str1len; i += 1) { nextCol = i + 1; for (j = 0; j < str2len; j += 1) { curCol = nextCol; if (this.useCollator) { strCmp = this.collator.compare(str1.charAt(i), str2CharAt[j]) === 0; } else { strCmp = str1.charCodeAt(i) === str2Char[j]; } nextCol = prevRow[j] + (strCmp ? 0 : 1); tmp = curCol + 1; if (nextCol > tmp) { nextCol = tmp; } tmp = prevRow[j + 1] + 1; if (nextCol > tmp) { nextCol = tmp; } prevRow[j] = curCol; } prevRow[j] = nextCol; } return nextCol; } /** * Indicates if a character is alphanumeric. * @param {Character} c Character. * @returns {Boolean} True if the character is alphanumeric, false otherwise. */ isAlphanumeric(c) { return this.alphanumeric.test(c); } /** * Given an string, iterates over it and return the start position, end position * and length of each of the words, without tokenizing the string. * @param {String} str String to be processed. * @returns {Object[]} Array of positions of the words, with the start index, * end index, and length. */ getWordPositions(str) { const strlen = str.length; const result = []; let lastIndex = 0; let currentIndex = 0; let atWhiteSpace = true; while (currentIndex < strlen) { if (!this.isAlphanumeric(str.charAt(currentIndex))) { if (!atWhiteSpace) { result.push({ start: lastIndex, end: currentIndex - 1, len: currentIndex - lastIndex, }); atWhiteSpace = true; } } else if (atWhiteSpace) { lastIndex = currentIndex; atWhiteSpace = false; } currentIndex += 1; } if (!atWhiteSpace) { result.push({ start: lastIndex, end: currentIndex - 1, len: currentIndex - lastIndex, }); } return result; } /** * Given two strings, search best occurence of the second inside the first, * that is, the consecutive words of the first string that have less * levenshtein distance with the second one. * @param {String} str1 First string. * @param {String} str2 Second string. * @param {Object[]} words1 Array of positions of the words of the first string. * If not provided this will be built. * @returns {Object} Best occurence, expressed as the index of the first character, * index of the last character, levenshtein distance and accuracy. */ getBestSubstring(str1, str2, words1) { const str1len = str1.length; const str2len = str2.length; if (str1len <= str2len) { const result = { start: 0, end: str1len - 1, len: str1len, levenshtein: this.getSimilarity(str1, str2), }; result.accuracy = (str2len - result.levenshtein) / str2len; return result; } const wordPositions = words1 || this.getWordPositions(str1); const wordPositionsLen = wordPositions.length; const best = { start: 0, end: 0, len: 0, levenshtein: undefined, accuracy: 0, }; for (let i = 0; i < wordPositionsLen; i += 1) { for (let j = i; j < wordPositionsLen; j += 1) { const str3 = str1.substring( wordPositions[i].start, wordPositions[j].end + 1 ); const levenshtein = this.getSimilarity(str3, str2); if (best.levenshtein === undefined || levenshtein < best.levenshtein) { best.levenshtein = levenshtein; best.start = wordPositions[i].start; best.end = wordPositions[j].end; best.len = best.end - best.start + 1; } } } best.accuracy = (str2len - best.levenshtein) / str2len; return best; } /** * Given two strings, search all the occurences of the second inside the first, * where the accuracy is at least as good as the threshold. * @param {String} str1 First string. * @param {String} str2 Second string. * @param {Object[]} words1 Array of positions of the words of the first string. * If not provided this will be built. * @returns {Object[]} List of occurences. */ getBestSubstringList(str1, str2, words1, threshold = 1) { const str1len = str1.length; const str2len = str2.length; const result = []; if (str1len <= str2len) { const levenshtein = this.getSimilarity(str1, str2); const accuracy = (str2len - levenshtein) / str2len; if (accuracy >= threshold) { result.push({ start: 0, end: str1len - 1, len: str1len, levenshtein, accuracy, }); } return result; } const wordPositions = words1 || this.getWordPositions(str1); const wordPositionsLen = wordPositions.length; for (let i = 0; i < wordPositionsLen; i += 1) { for (let j = i; j < wordPositionsLen; j += 1) { const str3 = str1.substring( wordPositions[i].start, wordPositions[j].end + 1 ); const levenshtein = this.getSimilarity(str3, str2); const accuracy = (str2len - levenshtein) / str2len; if (accuracy >= threshold) { result.push({ start: wordPositions[i].start, end: wordPositions[j].end, len: wordPositions[j].end - wordPositions[i].start + 1, levenshtein, accuracy, }); } } } return result; } reduceEdges(edges, useMaxLength = true) { for (let i = 0, l = edges.length; i < l; i += 1) { const edge = edges[i]; if (!edge.discarded) { for (let j = i + 1; j < l; j += 1) { const other = edges[j]; if (!other.discarded) { if (other.start <= edge.end && other.end >= edge.start) { if (other.accuracy < edge.accuracy) { other.discarded = true; } else if (other.accuracy > edge.accuracy) { edge.discarded = true; } else if ( (useMaxLength || other.entity === edge.entity || other.entity === 'number') && other.len <= edge.len ) { other.discarded = true; } else if ( (useMaxLength || other.entity === edge.entity || edge.entity === 'number') && other.len > edge.len ) { edge.discarded = true; } } } } } } const result = []; for (let i = 0, l = edges.length; i < l; i += 1) { if (!edges[i].discarded) { result.push(edges[i]); } } return result; } getEdgesFromEntity( str, entity, language, entityName, threshold = 1, srcWordPositions ) { const wordPositions = srcWordPositions || this.getWordPositions(str); const locale = entity.getLocaleRules ? entity.getLocaleRules(language) : entity[language]; const result = []; if (!locale) { return result; } const optionKeys = Object.keys(locale); for (let i = 0, li = optionKeys.length; i < li; i += 1) { const optionName = optionKeys[i]; const texts = locale[optionName]; for (let j = 0, lj = texts.length; j < lj; j += 1) { const current = this.getBestSubstringList( str, texts[j], wordPositions, threshold ); for (let k = 0, lk = current.length; k < lk; k += 1) { const item = current[k]; item.option = optionName; item.sourceText = texts[j]; item.entity = entityName || entity.name; item.utteranceText = str.substring(item.start, item.end + 1); result.push(item); } } } return this.reduceEdges(result); } /** * Given an utterance and an array of entities with options, search the * best option for each entity and return the results. * @param {String} str Utterance to retrieve entities. * @param {Object[]} entities Entities Array. * @param {String} locale Locale for the search. * @param {String[]} whitelist Whitelist of entity names for the search. */ getEdgesFromEntities(str, entities, language, whitelist, threshold = 1) { const result = []; const wordPositions = this.getWordPositions(str); const entityKeys = Object.keys(entities); for (let i = 0, l = entityKeys.length; i < l; i += 1) { const entityName = entityKeys[i]; if (!whitelist || whitelist.indexOf(entityName) !== -1) { const edges = this.getEdgesFromEntity( str, entities[entityName], language, entityName, threshold, wordPositions ); edges.forEach(srcEdge => { const edge = srcEdge; result.push(edge); }); } } return this.reduceEdges(result); } } module.exports = SimilarSearch;