UNPKG

node-nlp

Version:

Library for NLU (Natural Language Understanding) done in Node.js

313 lines (297 loc) 10.3 kB
/* * Copyright (c) AXA Shared Services Spain S.A. * * Permission is hereby granted, free of charge, to any person obtaining * a copy of this software and associated documentation files (the * "Software"), to deal in the Software without restriction, including * without limitation the rights to use, copy, modify, merge, publish, * distribute, sublicense, and/or sell copies of the Software, and to * permit persons to whom the Software is furnished to do so, subject to * the following conditions: * * The above copyright notice and this permission notice shall be * included in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE * LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION * OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION * WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ const NlpUtil = require('./nlp-util'); const LogisticRegressionClassifier = require('../classifiers/logistic-regression-classifier'); const BinaryNeuralNetworkClassifier = require('../classifiers/binary-neural-network-classifier'); /** * Class for the NLP Classifier. * In the settings you can specify: * - classifier (optional): The Machine Learning Classifier Class. If not * provided, then a default Logistic Regression Classifier is used. * - stemmer (optional): The language stemmer (also tokenize). If not * provided, you can provide the language and the default stemmer * for this language will be used. * - language (optional): If you don't provide a stemmer, then you can * provide a language so a default stemmer for this language will * be used. */ class NlpClassifier { /** * Constructor of the class. * @param {Object} settings Settings for this instance. */ constructor(settings) { this.settings = settings || {}; if (!this.settings.language) { this.settings.language = 'en'; } if (this.settings.useNeural === undefined) { this.settings.useNeural = true; } if (this.settings.useLRC === undefined) { this.settings.useLRC = true; } if (!this.settings.classifier && this.settings.useLRC) { this.settings.classifier = new LogisticRegressionClassifier(); } if (!this.settings.neuralClassifier && this.settings.useNeural) { this.settings.neuralClassifier = new BinaryNeuralNetworkClassifier(); } if (!this.settings.stemmer) { this.settings.stemmer = NlpUtil.getStemmer(this.settings.language); } if (this.settings.keepStopWords === undefined) { this.settings.keepStopWords = true; } this.docs = []; this.features = {}; } /** * Generate the vector of features. * @param {String} utterance Input utterance. * @returns {String[]} Vector of features. */ tokenizeAndStem(utterance) { return typeof utterance === 'string' ? this.settings.stemmer.tokenizeAndStem( utterance, this.settings.keepStopWords ) : utterance; } /** * Gets the position of a utterance for an intent. * @param {Object} srcUtterance Utterance to be found. * @param {Object} intent Intent of the utterance. * @returns {Number} Position of the utterance, -1 if not found. */ posUtterance(srcUtterance, intent) { const utterance = this.tokenizeAndStem(srcUtterance); const utteranceStr = utterance.join(' '); for (let i = 0; i < this.docs.length; i += 1) { const doc = this.docs[i]; if ( doc.utterance.join(' ') === utteranceStr && (!intent || doc.intent === intent) ) { return i; } } return -1; } /** * Indicates if an utterance already exists, at the given intent or globally. * @param {String} utterance Utterance to be checked. * @param {String} intent Intent to check, undefined to search globally. * @returns {boolean} True if the intent exists, false otherwise. */ existsUtterance(utterance, intent) { return this.posUtterance(utterance, intent) !== -1; } /** * Adds a new utterance to an intent. * @param {String} srcUtterance Utterance to be added. * @param {String} srcIntent Intent for adding the utterance. */ add(srcUtterance, srcIntent) { if (typeof srcUtterance !== 'string') { throw new Error('Utterance must be an string'); } if (typeof srcIntent !== 'string') { throw new Error('Intent must be an string'); } const intent = srcIntent.trim(); const utterance = this.tokenizeAndStem(srcUtterance); if (utterance.length === 0 || this.existsUtterance(utterance)) { return; } const doc = { intent, utterance }; this.docs.push(doc); utterance.forEach(token => { this.features[token] = (this.features[token] || 0) + 1; }); } /** * Remove an utterance from the classifier. * @param {String} srcUtterance Utterance to be removed. * @param {String} srcIntent Intent of the utterance, undefined to search all */ remove(srcUtterance, srcIntent) { if (typeof srcUtterance !== 'string') { throw new Error('Utterance must be an string'); } const intent = srcIntent ? srcIntent.trim() : undefined; const utterance = this.tokenizeAndStem(srcUtterance); if (utterance.length === 0) { return; } const pos = this.posUtterance(utterance, intent); if (pos !== -1) { this.docs.splice(pos, 1); utterance.forEach(token => { this.features[token] = this.features[token] - 1; if (this.features[token] <= 0) { delete this.features[token]; } }); } } /** * Given an utterance, tokenize and steam the utterance and convert it * to a vector of binary values, where each position is a feature (a word * stemmed) and the value means if the utterance has this feature. * The input utterance can be an string or an array of tokens. * @param {String} srcUtterance Utterance to be converted to features vector. * @returns {Number[]} Features vector of the utterance. */ textToFeatures(srcUtterance) { const utterance = Array.isArray(srcUtterance) ? srcUtterance : this.tokenizeAndStem(srcUtterance); const keys = Object.keys(this.features); const result = []; keys.forEach(key => { result.push(utterance.indexOf(key) > -1 ? 1 : 0); }); return result; } tokensToNeural(tokens) { const result = {}; for (let i = 0; i < tokens.length; i += 1) { if (this.features[tokens[i]]) { const value = Number.parseInt(tokens[i], 10); if (Number.isNaN(value)) { result[tokens[i]] = 1; } else { result['%number%'] = 1; } } } return result; } /** * Train the classifier with the existing utterances and intents. */ async train() { if (this.settings.useLRC) { this.settings.classifier.clear(); this.docs.forEach(doc => { const tokens = this.tokenizeAndStem(doc.utterance); this.settings.classifier.addObservation( this.textToFeatures(tokens), doc.intent ); }); if (this.settings.classifier.observationCount > 0) { await this.settings.classifier.train(); } } if (this.settings.useNeural) { const corpus = []; this.docs.forEach(doc => { const tokens = this.tokenizeAndStem(doc.utterance); corpus.push({ input: this.tokensToNeural(tokens), output: doc.intent, }); }); await this.settings.neuralClassifier.trainBatch(corpus); } } isEqualClassification(classifications) { for (let i = 0; i < classifications.length; i += 1) { if (classifications[i].value !== 0.5) { return false; } } return true; } normalizeNeural(classifications) { let total = 0; for (let i = 0; i < classifications.length; i += 1) { total += classifications[i].value; } if (total > 0) { const result = []; for (let i = 0; i < classifications.length; i += 1) { result.push({ label: classifications[i].label, value: classifications[i].value / total, }); } return result; } return classifications; } /** * Get all the labels and score for each label from this utterance. * @param {String} utterance Utterance to be classified. * @returns {Object[]} Sorted array of classifications, with label and score. */ getClassifications(utterance) { const tokens = this.tokenizeAndStem(utterance); if (this.settings.useLRC) { const classificationLRC = this.settings.classifier.getClassifications( this.textToFeatures(tokens) ); if (!this.settings.useNeural) { return classificationLRC; } if (this.isEqualClassification(classificationLRC)) { return classificationLRC; } const classificationNeural = this.normalizeNeural( this.settings.neuralClassifier.classify( this.tokensToNeural(tokens), true ) ); if (classificationLRC[0].label === classificationNeural[0].label) { if (classificationNeural[0].value < classificationLRC[0].value) { return classificationLRC; } } return classificationNeural; } if (this.settings.useNeural) { const classification = this.settings.neuralClassifier.classify( this.tokensToNeural(tokens), true ); if (this.isEqualClassification(classification)) { return classification; } return this.normalizeNeural(classification); } return []; } /** * Given an utterance, get the label and score of the best classification. * @param {String} utterance Utterance to be classified. * @returns {Object} Best classification of the observation. */ getBestClassification(utterance) { return this.getClassifications(utterance)[0]; } } module.exports = NlpClassifier;