UNPKG

node-nlp

Version:

Library for NLU (Natural Language Understanding) done in Node.js

180 lines (167 loc) 5.94 kB
/* * Copyright (c) AXA Shared Services Spain S.A. * * Permission is hereby granted, free of charge, to any person obtaining * a copy of this software and associated documentation files (the * "Software"), to deal in the Software without restriction, including * without limitation the rights to use, copy, modify, merge, publish, * distribute, sublicense, and/or sell copies of the Software, and to * permit persons to whom the Software is furnished to do so, subject to * the following conditions: * * The above copyright notice and this permission notice shall be * included in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE * LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION * OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION * WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ /** * Class for a generic classifier. * This is an abstract class that must be implemented by subclasses that * contains the real classifier algorithm. */ class Classifier { /** * Constructor of the class. * Initialize the basic properties and structure of any classifier. * @param {Object} settings Settings for initializing the instance. */ constructor(settings) { this.settings = settings || {}; this.clear(); } /** * Clears the content of the instance. * This is done by initializing the observations object, the labels array * and the observation count. */ clear() { this.observations = {}; this.labels = []; this.observationCount = 0; } /** * Adds a new label to the observation tree. If the label already exists, * return the existing one without creating it again. * @param {String} label Label to be created or getted. * @returns {String[]} List of observations assigned to this label. */ addLabel(label) { if (!this.observations[label]) { this.observations[label] = []; this.labels.push(label); } return this.observations[label]; } /** * Adds a new observation to the classifier. * @param {String} observation Observation to be added. * @param {String} label Label of the observation. */ addObservation(observation, label) { const labelObservations = this.addLabel(label); labelObservations.push(observation); this.observationCount += 1; } /** * Removes an observation from the observation list of a label. * @param {String} observation Observation to be removed. * @param {String} label Label where we want the observation to be removed. */ removeObservationByLabel(observation, label) { if (this.observations[label]) { const labelObservations = this.observations[label]; const index = labelObservations.indexOf(observation); if (index !== -1) { labelObservations.splice(index, 1); if (labelObservations.length === 0) { delete this.observations[label]; this.labels.splice(this.labels.indexOf(label), 1); } this.observationCount -= 1; } } } /** * Removes an observation. The label of the observation can be passed or * can be omitted. When omitted, it loops over all labels tryin to remove * the given observation. * @param {String} observation Observation to be removed. * @param {String} label Label of the observation, or undefined to iterate over * all labels. */ removeObservation(observation, label) { if (label) { this.removeObservationByLabel(observation, label); } else { for (let i = 0; i < this.labels.length; i += 1) { this.removeObservationByLabel(observation, this.labels[i]); } } } /** * Iterate all the observations to calculate the total observation count. */ recalculateObservationCount() { let count = 0; for (let i = 0, l = this.labels.length; i < l; i += 1) { if (this.observations[this.labels[i]]) { count += this.observations[this.labels[i]].length; } } this.observationCount = count; } /** * Classify one observation. */ classifyObservation() { throw new Error( 'This method is not implemented. Must be implemented by child classes.' ); } /** * Get all the labels and score for each label from one observation. * @param {String} observation Observation to be classified. * @returns {Object[]} Sorted array of classifications, that means label and the score. */ getClassifications(observation) { const labels = []; this.classifyObservation(observation, labels); return labels.sort((x, y) => y.value - x.value); } /** * Given an observation, get the label and score of the best classification. * @param {String} observation Observation to be classified. * @returns {Object} Best classification of the observation. */ getBestClassification(observation) { const classifications = this.getClassifications(observation); if (!classifications || classifications.length === 0) { return undefined; } return classifications[0]; } /** * Creates a matrix filled with zeros, that relate every single observation * with every single label. * @returns {Number[][]} A bidimensional array where x is the observation * and y is the label, filled to zeros. */ createClassificationMatrix() { const result = []; for (let i = 0; i < this.observationCount; i += 1) { const classification = []; result.push(classification); for (let j = 0, l = this.labels.length; j < l; j += 1) { classification.push(0); } } return result; } } module.exports = Classifier;