node-nlp
Version:
Library for NLU (Natural Language Understanding) done in Node.js
318 lines (317 loc) • 10.3 kB
HTML
<html lang="en">
<head>
<title>Code coverage report for lib/classifiers/logistic-regression-classifier.js</title>
<meta charset="utf-8" />
<link rel="stylesheet" href="..\..\prettify.css" />
<link rel="stylesheet" href="..\..\base.css" />
<meta name="viewport" content="width=device-width, initial-scale=1">
<style type='text/css'>
.coverage-summary .sorter {
background-image: url(..\..\sort-arrow-sprite.png);
}
</style>
</head>
<body>
<div class='wrapper'>
<div class='pad1'>
<h1>
<a href="..\..\index.html">All files</a> / <a href="index.html">lib/classifiers</a> logistic-regression-classifier.js
</h1>
<div class='clearfix'>
<div class='fl pad1y space-right2'>
<span class="strong">100% </span>
<span class="quiet">Statements</span>
<span class='fraction'>18/18</span>
</div>
<div class='fl pad1y space-right2'>
<span class="strong">100% </span>
<span class="quiet">Branches</span>
<span class='fraction'>2/2</span>
</div>
<div class='fl pad1y space-right2'>
<span class="strong">100% </span>
<span class="quiet">Functions</span>
<span class='fraction'>3/3</span>
</div>
<div class='fl pad1y space-right2'>
<span class="strong">100% </span>
<span class="quiet">Lines</span>
<span class='fraction'>18/18</span>
</div>
</div>
</div>
<div class='status-line high'></div>
<pre><table class="coverage">
<tr><td class="line-count quiet">1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85</td><td class="line-coverage quiet"><span class="cline-any cline-neutral"> </span>
<span class="cline-any cline-neutral"> </span>
<span class="cline-any cline-neutral"> </span>
<span class="cline-any cline-neutral"> </span>
<span class="cline-any cline-neutral"> </span>
<span class="cline-any cline-neutral"> </span>
<span class="cline-any cline-neutral"> </span>
<span class="cline-any cline-neutral"> </span>
<span class="cline-any cline-neutral"> </span>
<span class="cline-any cline-neutral"> </span>
<span class="cline-any cline-neutral"> </span>
<span class="cline-any cline-neutral"> </span>
<span class="cline-any cline-neutral"> </span>
<span class="cline-any cline-neutral"> </span>
<span class="cline-any cline-neutral"> </span>
<span class="cline-any cline-neutral"> </span>
<span class="cline-any cline-neutral"> </span>
<span class="cline-any cline-neutral"> </span>
<span class="cline-any cline-neutral"> </span>
<span class="cline-any cline-neutral"> </span>
<span class="cline-any cline-neutral"> </span>
<span class="cline-any cline-neutral"> </span>
<span class="cline-any cline-neutral"> </span>
<span class="cline-any cline-yes">31x</span>
<span class="cline-any cline-yes">31x</span>
<span class="cline-any cline-neutral"> </span>
<span class="cline-any cline-neutral"> </span>
<span class="cline-any cline-neutral"> </span>
<span class="cline-any cline-neutral"> </span>
<span class="cline-any cline-neutral"> </span>
<span class="cline-any cline-neutral"> </span>
<span class="cline-any cline-neutral"> </span>
<span class="cline-any cline-neutral"> </span>
<span class="cline-any cline-neutral"> </span>
<span class="cline-any cline-neutral"> </span>
<span class="cline-any cline-neutral"> </span>
<span class="cline-any cline-neutral"> </span>
<span class="cline-any cline-neutral"> </span>
<span class="cline-any cline-yes">46x</span>
<span class="cline-any cline-yes">46x</span>
<span class="cline-any cline-yes">46x</span>
<span class="cline-any cline-yes">46x</span>
<span class="cline-any cline-yes">99x</span>
<span class="cline-any cline-yes">99x</span>
<span class="cline-any cline-yes">366x</span>
<span class="cline-any cline-yes">366x</span>
<span class="cline-any cline-yes">366x</span>
<span class="cline-any cline-neutral"> </span>
<span class="cline-any cline-neutral"> </span>
<span class="cline-any cline-yes">46x</span>
<span class="cline-any cline-neutral"> </span>
<span class="cline-any cline-neutral"> </span>
<span class="cline-any cline-neutral"> </span>
<span class="cline-any cline-neutral"> </span>
<span class="cline-any cline-neutral"> </span>
<span class="cline-any cline-neutral"> </span>
<span class="cline-any cline-neutral"> </span>
<span class="cline-any cline-neutral"> </span>
<span class="cline-any cline-neutral"> </span>
<span class="cline-any cline-neutral"> </span>
<span class="cline-any cline-yes">541x</span>
<span class="cline-any cline-neutral"> </span>
<span class="cline-any cline-neutral"> </span>
<span class="cline-any cline-neutral"> </span>
<span class="cline-any cline-neutral"> </span>
<span class="cline-any cline-neutral"> </span>
<span class="cline-any cline-neutral"> </span>
<span class="cline-any cline-neutral"> </span>
<span class="cline-any cline-neutral"> </span>
<span class="cline-any cline-neutral"> </span>
<span class="cline-any cline-neutral"> </span>
<span class="cline-any cline-neutral"> </span>
<span class="cline-any cline-neutral"> </span>
<span class="cline-any cline-neutral"> </span>
<span class="cline-any cline-yes">616x</span>
<span class="cline-any cline-yes">616x</span>
<span class="cline-any cline-yes">74x</span>
<span class="cline-any cline-yes">541x</span>
<span class="cline-any cline-neutral"> </span>
<span class="cline-any cline-neutral"> </span>
<span class="cline-any cline-neutral"> </span>
<span class="cline-any cline-neutral"> </span>
<span class="cline-any cline-neutral"> </span>
<span class="cline-any cline-yes">31x</span>
<span class="cline-any cline-neutral"> </span></td><td class="text"><pre class="prettyprint lang-js">/*
* Copyright (c) AXA Shared Services Spain S.A.
*
* Permission is hereby granted, free of charge, to any person obtaining
* a copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sublicense, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* The above copyright notice and this permission notice shall be
* included in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
* LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
* OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
* WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*/
const Classifier = require('./classifier');
const { Mathops } = require('../math');
/**
* Class for a Logistic Regression Classifier.
*/
class LogisticRegressionClassifier extends Classifier {
/**
* Train the logistic regression clasifier, that means
* that it calculates the thetas that relates all the features
* with the classifications, so when a new vector of features
* is the input to classify, these thetas are the weights for the
* calculation of the scores of each classification.
*/
async train() {
const observations = [];
const classifications = this.createClassificationMatrix();
let currentObservation = 0;
for (let i = 0, li = this.labels.length; i < li; i += 1) {
const classificationObservations = this.observations[this.labels[i]];
for (let j = 0, lj = classificationObservations.length; j < lj; j += 1) {
observations.push(classificationObservations[j]);
classifications[currentObservation][i] = 1;
currentObservation += 1;
}
}
this.theta = await Mathops.computeThetas(observations, classifications);
}
/**
* Given an observation vector and the index of one of the classifications,
* it returns an object that contains the label of the classification and
* the score of the vector for this classification.
* @param {Vector} observation Observation vector.
* @param {Number} indexClassification Index of the classification.
*/
newClassification(observation, indexClassification) {
return {
label: this.labels[indexClassification],
value: Mathops.sigmoid(observation.dot(this.theta[indexClassification])),
};
}
/**
* Given an observation and an array for inserting the results,
* it calculates the score of the observation for each of the classifications
* and fills the array with the result objects.
* @param {Object} srcObservation Source observation.
* @param {Object[]} classifications Array of classifications.
*/
classifyObservation(srcObservation, classifications) {
const observation = Mathops.asVector(srcObservation);
if (this.theta) {
for (let i = 0; i < this.theta.length; i += 1) {
classifications.push(this.newClassification(observation, i));
}
}
}
}
module.exports = LogisticRegressionClassifier;
</pre></td></tr>
</table></pre>
<div class='push'></div><!-- for sticky footer -->
</div><!-- /wrapper -->
<div class='footer quiet pad2 space-top1 center small'>
Code coverage
generated by <a href="https://istanbul.js.org/" target="_blank">istanbul</a> at Fri Jan 25 2019 22:43:23 GMT+0100 (GMT+01:00)
</div>
</div>
<script src="..\..\prettify.js"></script>
<script>
window.onload = function () {
if (typeof prettyPrint === 'function') {
prettyPrint();
}
};
</script>
<script src="..\..\sorter.js"></script>
</body>
</html>