UNPKG

ngraph.sparse-collection

Version:

Subset of the University of Florida sparse matrix collection

1 lines 19.3 kB
module.exports = {"recordsPerEdge":3,"links":[50,1,1,52,2,1,54,3,1,56,4,1,58,5,1,60,6,1,62,7,1,64,8,1,66,9,1,68,10,1,70,11,1,72,12,1,86,13,1,88,14,1,90,15,1,92,16,1,94,17,1,96,18,1,98,19,1,100,20,1,102,21,1,104,22,1,106,23,1,108,24,1,1,25,1,2,26,1,3,27,1,4,28,1,5,29,1,6,30,1,7,31,1,8,32,1,9,33,1,10,34,1,11,35,1,12,36,1,13,37,1,14,38,1,15,39,1,16,40,1,17,41,1,18,42,1,19,43,1,20,44,1,21,45,1,22,46,1,23,47,1,24,48,1,25,49,1,26,50,1,27,51,1,28,52,1,29,53,1,30,54,1,31,55,1,32,56,1,33,57,1,34,58,1,35,59,1,36,60,1,37,61,1,38,62,1,39,63,1,40,64,1,41,65,1,42,66,1,43,67,1,44,68,1,45,69,1,46,70,1,47,71,1,48,72,1,1,73,-1,49,73,1,50,73,1,2,74,-1,51,74,1,52,74,1,3,75,-1,53,75,1,54,75,1,13,76,-1,55,76,1,56,76,1,14,77,-1,57,77,1,58,77,1,15,78,-1,59,78,1,60,78,1,25,79,-1,61,79,1,62,79,1,26,80,-1,63,80,1,64,80,1,27,81,-1,65,81,1,66,81,1,37,82,-1,67,82,1,68,82,1,38,83,-1,69,83,1,70,83,1,39,84,-1,71,84,1,72,84,1,1,85,-1,50,85,1,73,85,1,2,86,-1,52,86,1,74,86,1,3,87,-1,54,87,1,75,87,1,13,88,-1,56,88,1,76,88,1,14,89,-1,58,89,1,77,89,1,15,90,-1,60,90,1,78,90,1,25,91,-1,62,91,1,79,91,1,26,92,-1,64,92,1,80,92,1,27,93,-1,66,93,1,81,93,1,37,94,-1,68,94,1,82,94,1,38,95,-1,70,95,1,83,95,1,39,96,-1,72,96,1,84,96,1,4,97,-0.7,7,97,-0.1,49,97,-0.2,85,97,1,86,97,1,5,98,-0.7,8,98,-0.1,51,98,-0.2,87,98,1,88,98,1,6,99,-0.7,9,99,-0.1,53,99,-0.2,89,99,1,90,99,1,16,100,-0.7,19,100,-0.1,55,100,-0.2,91,100,1,92,100,1,17,101,-0.7,20,101,-0.1,57,101,-0.2,93,101,1,94,101,1,18,102,-0.7,21,102,-0.1,59,102,-0.2,95,102,1,96,102,1,28,103,-0.7,31,103,-0.1,61,103,-0.2,97,103,1,98,103,1,29,104,-0.7,32,104,-0.1,63,104,-0.2,99,104,1,100,104,1,30,105,-0.7,33,105,-0.1,65,105,-0.2,101,105,1,102,105,1,40,106,-0.7,43,106,-0.1,67,106,-0.2,103,106,1,104,106,1,41,107,-0.7,44,107,-0.1,69,107,-0.2,105,107,1,106,107,1,42,108,-0.7,45,108,-0.1,71,108,-0.2,107,108,1,4,109,-0.1,7,109,-0.7,73,109,-0.2,86,109,1,5,110,-0.1,8,110,-0.7,74,110,-0.2,88,110,1,6,111,-0.1,9,111,-0.7,75,111,-0.2,90,111,1,16,112,-0.1,19,112,-0.7,76,112,-0.2,92,112,1,17,113,-0.1,20,113,-0.7,77,113,-0.2,94,113,1,18,114,-0.1,21,114,-0.7,78,114,-0.2,96,114,1,28,115,-0.1,31,115,-0.7,79,115,-0.2,98,115,1,29,116,-0.1,32,116,-0.7,80,116,-0.2,100,116,1,30,117,-0.1,33,117,-0.7,81,117,-0.2,102,117,1,40,118,-0.1,43,118,-0.7,82,118,-0.2,104,118,1,41,119,-0.1,44,119,-0.7,83,119,-0.2,106,119,1,42,120,-0.1,45,120,-0.7,84,120,-0.2,108,120,1,4,121,-0.1,7,121,-0.6,49,121,-0.3,86,121,1,5,122,-0.1,8,122,-0.6,51,122,-0.3,88,122,1,6,123,-0.1,9,123,-0.6,53,123,-0.3,90,123,1,16,124,-0.1,19,124,-0.6,55,124,-0.3,92,124,1,17,125,-0.1,20,125,-0.6,57,125,-0.3,94,125,1,18,126,-0.1,21,126,-0.6,59,126,-0.3,96,126,1,28,127,-0.1,31,127,-0.6,61,127,-0.3,98,127,1,29,128,-0.1,32,128,-0.6,63,128,-0.3,100,128,1,30,129,-0.1,33,129,-0.6,65,129,-0.3,102,129,1,40,130,-0.1,43,130,-0.6,67,130,-0.3,104,130,1,41,131,-0.1,44,131,-0.6,69,131,-0.3,106,131,1,42,132,-0.1,45,132,-0.6,71,132,-0.3,108,132,1,4,133,-0.2,7,133,-0.3,10,133,-0.25,73,133,-0.25,86,133,1,5,134,-0.2,8,134,-0.3,11,134,-0.25,74,134,-0.25,88,134,1,6,135,-0.2,9,135,-0.3,12,135,-0.25,75,135,-0.25,90,135,1,16,136,-0.2,19,136,-0.3,22,136,-0.25,76,136,-0.25,92,136,1,17,137,-0.2,20,137,-0.3,23,137,-0.25,77,137,-0.25,94,137,1,18,138,-0.2,21,138,-0.3,24,138,-0.25,78,138,-0.25,96,138,1,28,139,-0.2,31,139,-0.3,34,139,-0.25,79,139,-0.25,98,139,1,29,140,-0.2,32,140,-0.3,35,140,-0.25,80,140,-0.25,100,140,1,30,141,-0.2,33,141,-0.3,36,141,-0.25,81,141,-0.25,102,141,1,40,142,-0.2,43,142,-0.3,46,142,-0.25,82,142,-0.25,104,142,1,41,143,-0.2,44,143,-0.3,47,143,-0.25,83,143,-0.25,106,143,1,42,144,-0.2,45,144,-0.3,48,144,-0.25,84,144,-0.25,108,144,1,4,145,-0.2,7,145,-0.2,10,145,-0.45,49,145,-0.15,86,145,1,5,146,-0.2,8,146,-0.2,11,146,-0.45,51,146,-0.15,88,146,1,6,147,-0.2,9,147,-0.2,12,147,-0.45,53,147,-0.15,90,147,1,16,148,-0.2,19,148,-0.2,22,148,-0.45,55,148,-0.15,92,148,1,17,149,-0.2,20,149,-0.2,23,149,-0.45,57,149,-0.15,94,149,1,18,150,-0.2,21,150,-0.2,24,150,-0.45,59,150,-0.15,96,150,1,28,151,-0.2,31,151,-0.2,34,151,-0.45,61,151,-0.15,98,151,1,29,152,-0.2,32,152,-0.2,35,152,-0.45,63,152,-0.15,100,152,1,30,153,-0.2,33,153,-0.2,36,153,-0.45,65,153,-0.15,102,153,1,40,154,-0.2,43,154,-0.2,46,154,-0.45,67,154,-0.15,104,154,1,41,155,-0.2,44,155,-0.2,47,155,-0.45,69,155,-0.15,106,155,1,42,156,-0.2,45,156,-0.2,48,156,-0.45,71,156,-0.15,108,156,1,4,157,-0.65,7,157,-0.2,73,157,-0.15,86,157,1,5,158,-0.65,8,158,-0.2,74,158,-0.15,88,158,1,6,159,-0.65,9,159,-0.2,75,159,-0.15,90,159,1,16,160,-0.65,19,160,-0.2,76,160,-0.15,92,160,1,17,161,-0.65,20,161,-0.2,77,161,-0.15,94,161,1,18,162,-0.65,21,162,-0.2,78,162,-0.15,96,162,1,28,163,-0.65,31,163,-0.2,79,163,-0.15,98,163,1,29,164,-0.65,32,164,-0.2,80,164,-0.15,100,164,1,30,165,-0.65,33,165,-0.2,81,165,-0.15,102,165,1,40,166,-0.65,43,166,-0.2,82,166,-0.15,104,166,1,41,167,-0.65,44,167,-0.2,83,167,-0.15,106,167,1,42,168,-0.65,45,168,-0.2,84,168,-0.15,108,168,1,4,169,-0.7,10,169,-0.3,86,169,1,5,170,-0.7,11,170,-0.3,88,170,1,6,171,-0.7,12,171,-0.3,90,171,1,16,172,-0.7,22,172,-0.3,92,172,1,17,173,-0.7,23,173,-0.3,94,173,1,18,174,-0.7,24,174,-0.3,96,174,1,28,175,-0.7,34,175,-0.3,98,175,1,29,176,-0.7,35,176,-0.3,100,176,1,30,177,-0.7,36,177,-0.3,102,177,1,40,178,-0.7,46,178,-0.3,104,178,1,41,179,-0.7,47,179,-0.3,106,179,1,42,180,-0.7,48,180,-0.3,108,180,1,4,181,-0.7,7,181,-0.3,86,181,1,5,182,-0.7,8,182,-0.3,88,182,1,6,183,-0.7,9,183,-0.3,90,183,1,16,184,-0.7,19,184,-0.3,92,184,1,17,185,-0.7,20,185,-0.3,94,185,1,18,186,-0.7,21,186,-0.3,96,186,1,28,187,-0.7,31,187,-0.3,98,187,1,29,188,-0.7,32,188,-0.3,100,188,1,30,189,-0.7,33,189,-0.3,102,189,1,40,190,-0.7,43,190,-0.3,104,190,1,41,191,-0.7,44,191,-0.3,106,191,1,42,192,-0.7,45,192,-0.3,108,192,1,85,193,-1,85,194,-1,85,195,-1,87,196,-1,193,196,1,87,197,-1,194,197,1,87,198,-1,195,198,1,89,199,-1,193,199,1,89,200,-1,194,200,1,89,201,-1,195,201,1,109,202,-1,196,202,1,109,203,-1,197,203,1,109,204,-1,198,204,1,110,205,-1,196,205,1,110,206,-1,197,206,1,110,207,-1,198,207,1,111,208,-1,196,208,1,111,209,-1,197,209,1,111,210,-1,198,210,1,121,211,-1,199,211,1,121,212,-1,200,212,1,121,213,-1,201,213,1,122,214,-1,199,214,1,122,215,-1,200,215,1,122,216,-1,201,216,1,123,217,-1,199,217,1,123,218,-1,200,218,1,123,219,-1,201,219,1,133,220,-1,202,220,1,133,221,-1,203,221,1,133,222,-1,204,222,1,134,223,-1,202,223,1,134,224,-1,203,224,1,134,225,-1,204,225,1,135,226,-1,202,226,1,135,227,-1,203,227,1,135,228,-1,204,228,1,145,229,-1,205,229,1,145,230,-1,206,230,1,145,231,-1,207,231,1,146,232,-1,205,232,1,146,233,-1,206,233,1,146,234,-1,207,234,1,147,235,-1,205,235,1,147,236,-1,206,236,1,147,237,-1,207,237,1,157,238,-1,208,238,1,157,239,-1,209,239,1,157,240,-1,210,240,1,158,241,-1,208,241,1,158,242,-1,209,242,1,158,243,-1,210,243,1,159,244,-1,208,244,1,159,245,-1,209,245,1,159,246,-1,210,246,1,169,247,-1,211,247,1,169,248,-1,212,248,1,169,249,-1,213,249,1,170,250,-1,211,250,1,170,251,-1,212,251,1,170,252,-1,213,252,1,171,253,-1,211,253,1,171,254,-1,212,254,1,171,255,-1,213,255,1,181,256,-1,214,256,1,181,257,-1,215,257,1,181,258,-1,216,258,1,182,259,-1,214,259,1,182,260,-1,215,260,1,182,261,-1,216,261,1,183,262,-1,214,262,1,183,263,-1,215,263,1,183,264,-1,216,264,1,91,265,-1,217,265,1,91,266,-1,218,266,1,91,267,-1,219,267,1,93,268,-1,217,268,1,93,269,-1,218,269,1,93,270,-1,219,270,1,95,271,-1,217,271,1,95,272,-1,218,272,1,95,273,-1,219,273,1,112,274,-1,220,274,1,112,275,-1,221,275,1,112,276,-1,222,276,1,113,277,-1,220,277,1,113,278,-1,221,278,1,113,279,-1,222,279,1,114,280,-1,220,280,1,114,281,-1,221,281,1,114,282,-1,222,282,1,124,283,-1,223,283,1,124,284,-1,224,284,1,124,285,-1,225,285,1,125,286,-1,223,286,1,125,287,-1,224,287,1,125,288,-1,225,288,1,126,289,-1,223,289,1,126,290,-1,224,290,1,126,291,-1,225,291,1,136,292,-1,226,292,1,136,293,-1,227,293,1,136,294,-1,228,294,1,137,295,-1,226,295,1,137,296,-1,227,296,1,137,297,-1,228,297,1,138,298,-1,226,298,1,138,299,-1,227,299,1,138,300,-1,228,300,1,148,301,-1,229,301,1,148,302,-1,230,302,1,148,303,-1,231,303,1,149,304,-1,229,304,1,149,305,-1,230,305,1,149,306,-1,231,306,1,150,307,-1,229,307,1,150,308,-1,230,308,1,150,309,-1,231,309,1,160,310,-1,232,310,1,160,311,-1,233,311,1,160,312,-1,234,312,1,161,313,-1,232,313,1,161,314,-1,233,314,1,161,315,-1,234,315,1,162,316,-1,232,316,1,162,317,-1,233,317,1,162,318,-1,234,318,1,172,319,-1,235,319,1,172,320,-1,236,320,1,172,321,-1,237,321,1,173,322,-1,235,322,1,173,323,-1,236,323,1,173,324,-1,237,324,1,174,325,-1,235,325,1,174,326,-1,236,326,1,174,327,-1,237,327,1,184,328,-1,238,328,1,184,329,-1,239,329,1,184,330,-1,240,330,1,185,331,-1,238,331,1,185,332,-1,239,332,1,185,333,-1,240,333,1,186,334,-1,238,334,1,186,335,-1,239,335,1,186,336,-1,240,336,1,97,337,-1,241,337,1,97,338,-1,242,338,1,97,339,-1,243,339,1,99,340,-1,241,340,1,99,341,-1,242,341,1,99,342,-1,243,342,1,101,343,-1,241,343,1,101,344,-1,242,344,1,101,345,-1,243,345,1,115,346,-1,244,346,1,115,347,-1,245,347,1,115,348,-1,246,348,1,116,349,-1,244,349,1,116,350,-1,245,350,1,116,351,-1,246,351,1,117,352,-1,244,352,1,117,353,-1,245,353,1,117,354,-1,246,354,1,127,355,-1,247,355,1,127,356,-1,248,356,1,127,357,-1,249,357,1,128,358,-1,247,358,1,128,359,-1,248,359,1,128,360,-1,249,360,1,129,361,-1,247,361,1,129,362,-1,248,362,1,129,363,-1,249,363,1,139,364,-1,250,364,1,139,365,-1,251,365,1,139,366,-1,252,366,1,140,367,-1,250,367,1,140,368,-1,251,368,1,140,369,-1,252,369,1,141,370,-1,250,370,1,141,371,-1,251,371,1,141,372,-1,252,372,1,151,373,-1,253,373,1,151,374,-1,254,374,1,151,375,-1,255,375,1,152,376,-1,253,376,1,152,377,-1,254,377,1,152,378,-1,255,378,1,153,379,-1,253,379,1,153,380,-1,254,380,1,153,381,-1,255,381,1,163,382,-1,256,382,1,163,383,-1,257,383,1,163,384,-1,258,384,1,164,385,-1,256,385,1,164,386,-1,257,386,1,164,387,-1,258,387,1,165,388,-1,256,388,1,165,389,-1,257,389,1,165,390,-1,258,390,1,175,391,-1,259,391,1,175,392,-1,260,392,1,175,393,-1,261,393,1,176,394,-1,259,394,1,176,395,-1,260,395,1,176,396,-1,261,396,1,177,397,-1,259,397,1,177,398,-1,260,398,1,177,399,-1,261,399,1,187,400,-1,262,400,1,187,401,-1,263,401,1,187,402,-1,264,402,1,188,403,-1,262,403,1,188,404,-1,263,404,1,188,405,-1,264,405,1,189,406,-1,262,406,1,189,407,-1,263,407,1,189,408,-1,264,408,1,103,409,-1,265,409,1,103,410,-1,266,410,1,103,411,-1,267,411,1,105,412,-1,265,412,1,105,413,-1,266,413,1,105,414,-1,267,414,1,107,415,-1,265,415,1,107,416,-1,266,416,1,107,417,-1,267,417,1,118,418,-1,268,418,1,118,419,-1,269,419,1,118,420,-1,270,420,1,119,421,-1,268,421,1,119,422,-1,269,422,1,119,423,-1,270,423,1,120,424,-1,268,424,1,120,425,-1,269,425,1,120,426,-1,270,426,1,130,427,-1,271,427,1,130,428,-1,272,428,1,130,429,-1,273,429,1,131,430,-1,271,430,1,131,431,-1,272,431,1,131,432,-1,273,432,1,132,433,-1,271,433,1,132,434,-1,272,434,1,132,435,-1,273,435,1,142,436,-1,274,436,1,142,437,-1,275,437,1,142,438,-1,276,438,1,143,439,-1,274,439,1,143,440,-1,275,440,1,143,441,-1,276,441,1,144,442,-1,274,442,1,144,443,-1,275,443,1,144,444,-1,276,444,1,154,445,-1,277,445,1,154,446,-1,278,446,1,154,447,-1,279,447,1,155,448,-1,277,448,1,155,449,-1,278,449,1,155,450,-1,279,450,1,156,451,-1,277,451,1,156,452,-1,278,452,1,156,453,-1,279,453,1,166,454,-1,280,454,1,166,455,-1,281,455,1,166,456,-1,282,456,1,167,457,-1,280,457,1,167,458,-1,281,458,1,167,459,-1,282,459,1,168,460,-1,280,460,1,168,461,-1,281,461,1,168,462,-1,282,462,1,178,463,-1,283,463,1,178,464,-1,284,464,1,178,465,-1,285,465,1,179,466,-1,283,466,1,179,467,-1,284,467,1,179,468,-1,285,468,1,180,469,-1,283,469,1,180,470,-1,284,470,1,180,471,-1,285,471,1,190,472,-1,286,472,1,190,473,-1,287,473,1,190,474,-1,288,474,1,191,475,-1,286,475,1,191,476,-1,287,476,1,191,477,-1,288,477,1,192,478,-1,286,478,1,192,479,-1,287,479,1,192,480,-1,288,480,1,193,481,-1,194,482,-1,195,483,-1,196,484,-1,197,485,-1,198,486,-1,199,487,-1,200,488,-1,201,489,-1,202,490,-1,203,491,-1,204,492,-1,205,493,-1,206,494,-1,207,495,-1,208,496,-1,209,497,-1,210,498,-1,211,499,-1,212,500,-1,213,501,-1,214,502,-1,215,503,-1,216,504,-1,217,505,-1,218,506,-1,219,507,-1,220,508,-1,221,509,-1,222,510,-1,223,511,-1,224,512,-1,225,513,-1,226,514,-1,227,515,-1,228,516,-1,229,517,-1,230,518,-1,231,519,-1,232,520,-1,233,521,-1,234,522,-1,235,523,-1,236,524,-1,237,525,-1,238,526,-1,239,527,-1,240,528,-1,241,529,-1,242,530,-1,243,531,-1,244,532,-1,245,533,-1,246,534,-1,247,535,-1,248,536,-1,249,537,-1,250,538,-1,251,539,-1,252,540,-1,253,541,-1,254,542,-1,255,543,-1,256,544,-1,257,545,-1,258,546,-1,259,547,-1,260,548,-1,261,549,-1,262,550,-1,263,551,-1,264,552,-1,265,553,-1,266,554,-1,267,555,-1,268,556,-1,269,557,-1,270,558,-1,271,559,-1,272,560,-1,273,561,-1,274,562,-1,275,563,-1,276,564,-1,277,565,-1,278,566,-1,279,567,-1,280,568,-1,281,569,-1,282,570,-1,283,571,-1,284,572,-1,285,573,-1,286,574,-1,287,575,-1,288,576,-1,1,577,-1,13,577,1,2,578,-1,14,578,1,3,579,-1,15,579,1,49,580,-1,55,580,1,51,581,-1,57,581,1,53,582,-1,59,582,1,73,583,-1,76,583,1,74,584,-1,77,584,1,75,585,-1,78,585,1,4,586,-1,16,586,1,5,587,-1,17,587,1,6,588,-1,18,588,1,7,589,-1,19,589,1,8,590,-1,20,590,1,9,591,-1,21,591,1,10,592,-1,22,592,1,11,593,-1,23,593,1,12,594,-1,24,594,1,85,595,-1,91,595,1,87,596,-1,93,596,1,89,597,-1,95,597,1,109,598,-1,112,598,1,110,599,-1,113,599,1,111,600,-1,114,600,1,121,601,-1,124,601,1,122,602,-1,125,602,1,123,603,-1,126,603,1,133,604,-1,136,604,1,134,605,-1,137,605,1,135,606,-1,138,606,1,145,607,-1,148,607,1,146,608,-1,149,608,1,147,609,-1,150,609,1,157,610,-1,160,610,1,158,611,-1,161,611,1,159,612,-1,162,612,1,169,613,-1,172,613,1,170,614,-1,173,614,1,171,615,-1,174,615,1,181,616,-1,184,616,1,182,617,-1,185,617,1,183,618,-1,186,618,1,13,619,-1,25,619,1,14,620,-1,26,620,1,15,621,-1,27,621,1,55,622,-1,61,622,1,57,623,-1,63,623,1,59,624,-1,65,624,1,76,625,-1,79,625,1,77,626,-1,80,626,1,78,627,-1,81,627,1,16,628,-1,28,628,1,17,629,-1,29,629,1,18,630,-1,30,630,1,19,631,-1,31,631,1,20,632,-1,32,632,1,21,633,-1,33,633,1,22,634,-1,34,634,1,23,635,-1,35,635,1,24,636,-1,36,636,1,91,637,-1,97,637,1,93,638,-1,99,638,1,95,639,-1,101,639,1,112,640,-1,115,640,1,113,641,-1,116,641,1,114,642,-1,117,642,1,124,643,-1,127,643,1,125,644,-1,128,644,1,126,645,-1,129,645,1,136,646,-1,139,646,1,137,647,-1,140,647,1,138,648,-1,141,648,1,148,649,-1,151,649,1,149,650,-1,152,650,1,150,651,-1,153,651,1,160,652,-1,163,652,1,161,653,-1,164,653,1,162,654,-1,165,654,1,172,655,-1,175,655,1,173,656,-1,176,656,1,174,657,-1,177,657,1,184,658,-1,187,658,1,185,659,-1,188,659,1,186,660,-1,189,660,1,25,661,-1,37,661,1,26,662,-1,38,662,1,27,663,-1,39,663,1,61,664,-1,67,664,1,63,665,-1,69,665,1,65,666,-1,71,666,1,79,667,-1,82,667,1,80,668,-1,83,668,1,81,669,-1,84,669,1,28,670,-1,40,670,1,29,671,-1,41,671,1,30,672,-1,42,672,1,31,673,-1,43,673,1,32,674,-1,44,674,1,33,675,-1,45,675,1,34,676,-1,46,676,1,35,677,-1,47,677,1,36,678,-1,48,678,1,97,679,-1,103,679,1,99,680,-1,105,680,1,101,681,-1,107,681,1,115,682,-1,118,682,1,116,683,-1,119,683,1,117,684,-1,120,684,1,127,685,-1,130,685,1,128,686,-1,131,686,1,129,687,-1,132,687,1,139,688,-1,142,688,1,140,689,-1,143,689,1,141,690,-1,144,690,1,151,691,-1,154,691,1,152,692,-1,155,692,1,153,693,-1,156,693,1,163,694,-1,166,694,1,164,695,-1,167,695,1,165,696,-1,168,696,1,175,697,-1,178,697,1,176,698,-1,179,698,1,177,699,-1,180,699,1,187,700,-1,190,700,1,188,701,-1,191,701,1,189,702,-1,192,702,1,37,703,-1,38,704,-1,39,705,-1,67,706,-1,69,707,-1,71,708,-1,82,709,-1,83,710,-1,84,711,-1,40,712,-1,41,713,-1,42,714,-1,43,715,-1,44,716,-1,45,717,-1,46,718,-1,47,719,-1,48,720,-1,103,721,-1,105,722,-1,107,723,-1,118,724,-1,119,725,-1,120,726,-1,130,727,-1,131,728,-1,132,729,-1,142,730,-1,143,731,-1,144,732,-1,154,733,-1,155,734,-1,156,735,-1,166,736,-1,167,737,-1,168,738,-1,178,739,-1,179,740,-1,180,741,-1,190,742,-1,191,743,-1,192,744,-1],"description":"%MatrixMarket matrix coordinate real general\n-------------------------------------------------------------------------------\n UF Sparse Matrix Collection, Tim Davis\n http://www.cise.ufl.edu/research/sparse/matrices/LPnetlib/lpi_chemcom\n name: LPnetlib/lpi_chemcom\n [Netlib LP problem chemcom: minimize c'*x, where Ax=b, lo<=x<=hi]\n id: 709\n date: 1993\n author: T. Baker\n ed: J. Chinneck\n fields: title name A b id aux kind date author ed notes\n aux: c lo hi z0\n kind: linear programming problem\n-------------------------------------------------------------------------------\n notes:\n An infeasible Netlib LP problem, in lp/infeas. For more information \n send email to netlib@ornl.gov with the message: \n \n \tsend index from lp \n \tsend readme from lp/infeas \n \n The lp/infeas directory contains infeasible linear programming test problems\n collected by John W. Chinneck, Carleton Univ, Ontario Canada. The following\n are relevant excerpts from lp/infeas/readme (by John W. Chinneck): \n \n In the following, IIS stands for Irreducible Infeasible Subsystem, a set \n of constraints which is itself infeasible, but becomes feasible when any \n one member is removed. Isolating an IIS from within the larger set of \n constraints defining the model is one analysis approach. \n \n PROBLEM DESCRIPTION \n ------------------- \n \n CHEMCOM, QUAL, REFINERY, REACTOR, VOL1: medium size problems derived \n from a petrochemical plant model. Doctored to generate infeasibility \n due to inability to meet volume or quality restrictions. With the \n exception of REACTOR, these are highly volatile problems, yielding IISs \n of varying sizes when different IIS isolation algorithms are applied. \n See Chinneck [1993] for further discussion. Contributor: Tom Baker, \n Chesapeake Decision Sciences. \n \n Name Rows Cols Nonzeros Bounds Notes \n chemcom 289 720 2190 B \n \n REFERENCES \n ---------- \n \n J.W. Chinneck (1993). \"Finding the Most Useful Subset of Constraints \n for Analysis in an Infeasible Linear Program\", technical report \n SCE-93-07, Systems and Computer Engineering, Carleton University, \n Ottawa, Canada. \n \n-------------------------------------------------------------------------------"};