UNPKG

ngraph.sparse-collection

Version:

Subset of the University of Florida sparse matrix collection

1 lines 9.9 kB
module.exports = {"recordsPerEdge":3,"links":[3,1,-1,197,1,-1,231,2,-1,1,3,-1,196,3,1,1,4,1,2,4,1,3,4,1,230,4,1,6,5,-1,199,5,-1,5,6,-1,231,6,-1,4,7,-1,198,7,1,4,8,1,5,8,1,6,8,1,230,8,1,198,9,-1,8,10,-1,230,10,-1,7,11,-1,231,11,1,7,12,1,8,12,1,9,12,1,199,12,1,12,13,-1,196,13,-1,11,14,-1,230,14,-1,10,15,-1,231,15,1,10,16,1,11,16,1,12,16,1,197,16,1,15,17,-1,197,17,-1,14,18,-1,227,18,-1,13,19,-1,196,19,1,13,20,1,14,20,1,15,20,1,226,20,1,18,21,-1,199,21,-1,17,22,-1,227,22,-1,16,23,-1,198,23,1,16,24,1,17,24,1,18,24,1,226,24,1,21,25,-1,198,25,-1,20,26,-1,226,26,-1,19,27,-1,227,27,1,19,28,1,20,28,1,21,28,1,199,28,1,24,29,-1,196,29,-1,23,30,-1,226,30,-1,22,31,-1,227,31,1,22,32,1,23,32,1,24,32,1,197,32,1,27,33,-1,197,33,-1,26,34,-1,223,34,-1,25,35,-1,196,35,1,25,36,1,26,36,1,27,36,1,222,36,1,30,37,-1,199,37,-1,29,38,-1,223,38,-1,28,39,-1,198,39,1,28,40,1,29,40,1,30,40,1,222,40,1,33,41,-1,198,41,-1,32,42,-1,222,42,-1,31,43,-1,223,43,1,31,44,1,32,44,1,33,44,1,199,44,1,36,45,-1,196,45,-1,35,46,-1,222,46,-1,34,47,-1,223,47,1,34,48,1,35,48,1,36,48,1,197,48,1,39,49,-1,197,49,-1,38,50,-1,219,50,-1,37,51,-1,196,51,1,37,52,1,38,52,1,39,52,1,218,52,1,42,53,-1,199,53,-1,41,54,-1,219,54,-1,40,55,-1,198,55,1,40,56,1,41,56,1,42,56,1,218,56,1,45,57,-1,198,57,-1,44,58,-1,218,58,-1,43,59,-1,219,59,1,43,60,1,44,60,1,45,60,1,199,60,1,48,61,-1,196,61,-1,47,62,-1,218,62,-1,46,63,-1,219,63,1,46,64,1,47,64,1,48,64,1,197,64,1,51,65,-1,197,65,-1,50,66,-1,215,66,-1,49,67,-1,196,67,1,49,68,1,50,68,1,51,68,1,214,68,1,54,69,-1,199,69,-1,53,70,-1,215,70,-1,52,71,-1,198,71,1,52,72,1,53,72,1,54,72,1,214,72,1,57,73,-1,198,73,-1,56,74,-1,214,74,-1,55,75,-1,215,75,1,55,76,1,56,76,1,57,76,1,199,76,1,60,77,-1,196,77,-1,59,78,-1,214,78,-1,58,79,-1,215,79,1,58,80,1,59,80,1,60,80,1,197,80,1,63,81,-1,197,81,-1,62,82,-1,211,82,-1,61,83,-1,196,83,1,61,84,1,62,84,1,63,84,1,210,84,1,66,85,-1,199,85,-1,65,86,-1,211,86,-1,64,87,-1,198,87,1,64,88,1,65,88,1,66,88,1,210,88,1,69,89,-1,198,89,-1,68,90,-1,210,90,-1,67,91,-1,211,91,1,67,92,1,68,92,1,69,92,1,199,92,1,72,93,-1,196,93,-1,71,94,-1,210,94,-1,70,95,-1,211,95,1,70,96,1,71,96,1,72,96,1,197,96,1,75,97,-1,197,97,-1,74,98,-1,207,98,-1,73,99,-1,196,99,1,73,100,1,74,100,1,75,100,1,206,100,1,78,101,-1,199,101,-1,77,102,-1,207,102,-1,76,103,-1,198,103,1,76,104,1,77,104,1,78,104,1,206,104,1,81,105,-1,198,105,-1,80,106,-1,206,106,-1,79,107,-1,207,107,1,79,108,1,80,108,1,81,108,1,199,108,1,84,109,-1,196,109,-1,83,110,-1,206,110,-1,82,111,-1,207,111,1,82,112,1,83,112,1,84,112,1,197,112,1,87,113,-1,197,113,-1,86,114,-1,203,114,-1,85,115,-1,196,115,1,85,116,1,86,116,1,87,116,1,202,116,1,90,117,-1,199,117,-1,89,118,-1,203,118,-1,88,119,-1,198,119,1,88,120,1,89,120,1,90,120,1,202,120,1,93,121,-1,198,121,-1,92,122,-1,202,122,-1,91,123,-1,203,123,1,91,124,1,92,124,1,93,124,1,199,124,1,96,125,-1,196,125,-1,95,126,-1,202,126,-1,94,127,-1,203,127,1,94,128,1,95,128,1,96,128,1,197,128,1,99,129,-1,197,129,-1,98,130,-1,201,130,-1,97,131,-1,196,131,1,97,132,1,98,132,1,99,132,1,200,132,1,102,133,-1,199,133,-1,101,134,-1,201,134,-1,100,135,-1,198,135,1,100,136,1,101,136,1,102,136,1,200,136,1,105,137,-1,198,137,-1,104,138,-1,200,138,-1,103,139,-1,201,139,1,103,140,1,104,140,1,105,140,1,199,140,1,108,141,-1,196,141,-1,107,142,-1,200,142,-1,106,143,-1,201,143,1,106,144,1,107,144,1,108,144,1,197,144,1,111,145,-1,196,145,-1,110,146,-1,204,146,-1,109,147,-1,205,147,1,109,148,1,110,148,1,111,148,1,197,148,1,114,149,-1,198,149,-1,113,150,-1,204,150,-1,112,151,-1,205,151,1,112,152,1,113,152,1,114,152,1,199,152,1,117,153,-1,197,153,-1,116,154,-1,205,154,-1,115,155,-1,196,155,1,115,156,1,116,156,1,117,156,1,204,156,1,120,157,-1,199,157,-1,119,158,-1,205,158,-1,118,159,-1,198,159,1,118,160,1,119,160,1,120,160,1,204,160,1,123,161,-1,196,161,-1,122,162,-1,208,162,-1,121,163,-1,209,163,1,121,164,1,122,164,1,123,164,1,197,164,1,126,165,-1,198,165,-1,125,166,-1,208,166,-1,124,167,-1,209,167,1,124,168,1,125,168,1,126,168,1,199,168,1,130,169,-1,230,169,-1,129,170,-1,197,170,-1,128,171,-1,209,171,-1,127,172,-1,196,172,1,127,173,1,128,173,1,129,173,1,130,173,1,208,173,1,133,174,-1,199,174,-1,132,175,-1,209,175,-1,131,176,-1,198,176,1,131,177,1,132,177,1,133,177,1,208,177,1,136,178,-1,196,178,-1,135,179,-1,212,179,-1,134,180,-1,213,180,1,134,181,1,135,181,1,136,181,1,197,181,1,139,182,-1,198,182,-1,138,183,-1,212,183,-1,137,184,-1,213,184,1,137,185,1,138,185,1,139,185,1,199,185,1,142,186,-1,197,186,-1,141,187,-1,213,187,-1,140,188,-1,196,188,1,140,189,1,141,189,1,142,189,1,212,189,1,145,190,-1,199,190,-1,144,191,-1,213,191,-1,143,192,-1,198,192,1,143,193,1,144,193,1,145,193,1,212,193,1,148,194,-1,196,194,-1,147,195,-1,216,195,-1,146,196,-1,217,196,1,146,197,1,147,197,1,148,197,1,151,198,-1,150,199,-1,216,199,-1,149,200,-1,217,200,1,149,201,1,150,201,1,151,201,1,199,201,1,154,202,-1,197,202,-1,153,203,-1,217,203,-1,152,204,-1,196,204,1,152,205,1,153,205,1,154,205,1,216,205,1,157,206,-1,199,206,-1,156,207,-1,217,207,-1,155,208,-1,198,208,1,155,209,1,156,209,1,157,209,1,216,209,1,160,210,-1,196,210,-1,159,211,-1,220,211,-1,158,212,-1,221,212,1,158,213,1,159,213,1,160,213,1,197,213,1,163,214,-1,198,214,-1,162,215,-1,220,215,-1,161,216,-1,221,216,1,161,217,1,162,217,1,163,217,1,199,217,1,166,218,-1,197,218,-1,165,219,-1,221,219,-1,164,220,-1,196,220,1,164,221,1,165,221,1,166,221,1,220,221,1,169,222,-1,199,222,-1,168,223,-1,221,223,-1,167,224,-1,198,224,1,167,225,1,168,225,1,169,225,1,220,225,1,172,226,-1,196,226,-1,171,227,-1,224,227,-1,170,228,-1,225,228,1,170,229,1,171,229,1,172,229,1,197,229,1,175,230,-1,198,230,-1,174,231,-1,224,231,-1,173,232,-1,225,232,1,173,233,1,174,233,1,175,233,1,199,233,1,178,234,-1,197,234,-1,177,235,-1,225,235,-1,176,236,-1,196,236,1,176,237,1,177,237,1,178,237,1,224,237,1,181,238,-1,199,238,-1,180,239,-1,225,239,-1,179,240,-1,198,240,1,179,241,1,180,241,1,181,241,1,224,241,1,184,242,-1,196,242,-1,183,243,-1,228,243,-1,182,244,-1,229,244,1,182,245,1,183,245,1,184,245,1,197,245,1,187,246,-1,198,246,-1,186,247,-1,228,247,-1,185,248,-1,229,248,1,185,249,1,186,249,1,187,249,1,199,249,1,190,250,-1,197,250,-1,189,251,-1,229,251,-1,188,252,-1,196,252,1,188,253,1,189,253,1,190,253,1,228,253,1,193,254,-1,199,254,-1,192,255,-1,229,255,-1,191,256,-1,198,256,1,191,257,1,192,257,1,193,257,1,228,257,1,194,258,-1,197,258,-1,194,259,1,199,259,1,195,260,-1,199,260,-1,195,261,1,197,261,1],"description":"%MatrixMarket matrix coordinate integer general\n-------------------------------------------------------------------------------\n UF Sparse Matrix Collection, Tim Davis\n http://www.cise.ufl.edu/research/sparse/matrices/LPnetlib/lpi_box1\n name: LPnetlib/lpi_box1\n [Netlib LP problem box1: minimize c'*x, where Ax=b, lo<=x<=hi]\n id: 707\n date: 1992\n author: Z. You\n ed: J. Chinneck\n fields: title name A b id aux kind date author ed notes\n aux: c lo hi z0\n kind: linear programming problem\n-------------------------------------------------------------------------------\n notes:\n An infeasible Netlib LP problem, in lp/infeas. For more information \n send email to netlib@ornl.gov with the message: \n \n \tsend index from lp \n \tsend readme from lp/infeas \n \n The lp/infeas directory contains infeasible linear programming test problems\n collected by John W. Chinneck, Carleton Univ, Ontario Canada. The following\n are relevant excerpts from lp/infeas/readme (by John W. Chinneck): \n \n In the following, IIS stands for Irreducible Infeasible Subsystem, a set \n of constraints which is itself infeasible, but becomes feasible when any \n one member is removed. Isolating an IIS from within the larger set of \n constraints defining the model is one analysis approach. \n \n PROBLEM DESCRIPTION \n ------------------- \n \n BOX1, EX72A, EX73A: medium problems derived from research on using the \n infeasibility version of viability analysis [Chinneck 1992] to analyze \n petri net models. All three problems are volatile, showing IISs of \n widely differing size depending on the algorithm applied. Contributor: \n Zhengping You, Carleton University. \n \n Name Rows Cols Nonzeros Bounds Notes \n box1 232 261 912 B all cols are LO bounded \n \n REFERENCES \n ---------- \n \n J.W. Chinneck (1992). \"Viability Analysis: A Formulation Aid for All \n Classes of Network Models\", Naval Research Logistics, Vol. 39, pp. \n 531-543. \n \n Added to Netlib on Sept. 19, 1993 \n \n-------------------------------------------------------------------------------"};