next
Version:
The React Framework
1,024 lines • 75.7 kB
JavaScript
"use strict";
Object.defineProperty(exports, "__esModule", {
value: true
});
0 && (module.exports = {
EntryStatus: null,
canNewFetchStrategyProvideMoreContent: null,
convertRouteTreeToFlightRouterState: null,
createDetachedSegmentCacheEntry: null,
fetchRouteOnCacheMiss: null,
fetchSegmentOnCacheMiss: null,
fetchSegmentPrefetchesUsingDynamicRequest: null,
getCurrentCacheVersion: null,
getSegmentKeypathForTask: null,
pingInvalidationListeners: null,
readExactRouteCacheEntry: null,
readOrCreateRevalidatingSegmentEntry: null,
readOrCreateRouteCacheEntry: null,
readOrCreateSegmentCacheEntry: null,
readRouteCacheEntry: null,
readSegmentCacheEntry: null,
requestOptimisticRouteCacheEntry: null,
resetRevalidatingSegmentEntry: null,
revalidateEntireCache: null,
upgradeToPendingSegment: null,
upsertSegmentEntry: null,
waitForSegmentCacheEntry: null
});
function _export(target, all) {
for(var name in all)Object.defineProperty(target, name, {
enumerable: true,
get: all[name]
});
}
_export(exports, {
EntryStatus: function() {
return EntryStatus;
},
canNewFetchStrategyProvideMoreContent: function() {
return canNewFetchStrategyProvideMoreContent;
},
convertRouteTreeToFlightRouterState: function() {
return convertRouteTreeToFlightRouterState;
},
createDetachedSegmentCacheEntry: function() {
return createDetachedSegmentCacheEntry;
},
fetchRouteOnCacheMiss: function() {
return fetchRouteOnCacheMiss;
},
fetchSegmentOnCacheMiss: function() {
return fetchSegmentOnCacheMiss;
},
fetchSegmentPrefetchesUsingDynamicRequest: function() {
return fetchSegmentPrefetchesUsingDynamicRequest;
},
getCurrentCacheVersion: function() {
return getCurrentCacheVersion;
},
getSegmentKeypathForTask: function() {
return getSegmentKeypathForTask;
},
pingInvalidationListeners: function() {
return pingInvalidationListeners;
},
readExactRouteCacheEntry: function() {
return readExactRouteCacheEntry;
},
readOrCreateRevalidatingSegmentEntry: function() {
return readOrCreateRevalidatingSegmentEntry;
},
readOrCreateRouteCacheEntry: function() {
return readOrCreateRouteCacheEntry;
},
readOrCreateSegmentCacheEntry: function() {
return readOrCreateSegmentCacheEntry;
},
readRouteCacheEntry: function() {
return readRouteCacheEntry;
},
readSegmentCacheEntry: function() {
return readSegmentCacheEntry;
},
requestOptimisticRouteCacheEntry: function() {
return requestOptimisticRouteCacheEntry;
},
resetRevalidatingSegmentEntry: function() {
return resetRevalidatingSegmentEntry;
},
revalidateEntireCache: function() {
return revalidateEntireCache;
},
upgradeToPendingSegment: function() {
return upgradeToPendingSegment;
},
upsertSegmentEntry: function() {
return upsertSegmentEntry;
},
waitForSegmentCacheEntry: function() {
return waitForSegmentCacheEntry;
}
});
const _types = require("../../../server/app-render/types");
const _approuterheaders = require("../app-router-headers");
const _fetchserverresponse = require("../router-reducer/fetch-server-response");
const _scheduler = require("./scheduler");
const _appbuildid = require("../../app-build-id");
const _createhreffromurl = require("../router-reducer/create-href-from-url");
const _cachekey = require("./cache-key");
const _routeparams = require("../../route-params");
const _tuplemap = require("./tuple-map");
const _lru = require("./lru");
const _segmentvalueencoding = require("../../../shared/lib/segment-cache/segment-value-encoding");
const _flightdatahelpers = require("../../flight-data-helpers");
const _prefetchcacheutils = require("../router-reducer/prefetch-cache-utils");
const _links = require("../links");
const _segment = require("../../../shared/lib/segment");
const _outputexportprefetchencoding = require("../../../shared/lib/segment-cache/output-export-prefetch-encoding");
const _segmentcache = require("../segment-cache");
const _promisewithresolvers = require("../../../shared/lib/promise-with-resolvers");
var EntryStatus = /*#__PURE__*/ function(EntryStatus) {
EntryStatus[EntryStatus["Empty"] = 0] = "Empty";
EntryStatus[EntryStatus["Pending"] = 1] = "Pending";
EntryStatus[EntryStatus["Fulfilled"] = 2] = "Fulfilled";
EntryStatus[EntryStatus["Rejected"] = 3] = "Rejected";
return EntryStatus;
}({});
const isOutputExportMode = process.env.NODE_ENV === 'production' && process.env.__NEXT_CONFIG_OUTPUT === 'export';
/**
* Ensures a minimum stale time of 30s to avoid issues where the server sends a too
* short-lived stale time, which would prevent anything from being prefetched.
*/ function getStaleTimeMs(staleTimeSeconds) {
return Math.max(staleTimeSeconds, 30) * 1000;
}
let routeCacheMap = (0, _tuplemap.createTupleMap)();
// We use an LRU for memory management. We must update this whenever we add or
// remove a new cache entry, or when an entry changes size.
// TODO: I chose the max size somewhat arbitrarily. Consider setting this based
// on navigator.deviceMemory, or some other heuristic. We should make this
// customizable via the Next.js config, too.
const maxRouteLruSize = 10 * 1024 * 1024 // 10 MB
;
let routeCacheLru = (0, _lru.createLRU)(maxRouteLruSize, onRouteLRUEviction);
let segmentCacheMap = (0, _tuplemap.createTupleMap)();
// NOTE: Segments and Route entries are managed by separate LRUs. We could
// combine them into a single LRU, but because they are separate types, we'd
// need to wrap each one in an extra LRU node (to maintain monomorphism, at the
// cost of additional memory).
const maxSegmentLruSize = 50 * 1024 * 1024 // 50 MB
;
let segmentCacheLru = (0, _lru.createLRU)(maxSegmentLruSize, onSegmentLRUEviction);
// All invalidation listeners for the whole cache are tracked in single set.
// Since we don't yet support tag or path-based invalidation, there's no point
// tracking them any more granularly than this. Once we add granular
// invalidation, that may change, though generally the model is to just notify
// the listeners and allow the caller to poll the prefetch cache with a new
// prefetch task if desired.
let invalidationListeners = null;
// Incrementing counter used to track cache invalidations.
let currentCacheVersion = 0;
function getCurrentCacheVersion() {
return currentCacheVersion;
}
function revalidateEntireCache(nextUrl, tree) {
currentCacheVersion++;
// Clearing the cache also effectively rejects any pending requests, because
// when the response is received, it gets written into a cache entry that is
// no longer reachable.
// TODO: There's an exception to this case that we don't currently handle
// correctly: background revalidations. See note in `upsertSegmentEntry`.
routeCacheMap = (0, _tuplemap.createTupleMap)();
routeCacheLru = (0, _lru.createLRU)(maxRouteLruSize, onRouteLRUEviction);
segmentCacheMap = (0, _tuplemap.createTupleMap)();
segmentCacheLru = (0, _lru.createLRU)(maxSegmentLruSize, onSegmentLRUEviction);
// Prefetch all the currently visible links again, to re-fill the cache.
(0, _links.pingVisibleLinks)(nextUrl, tree);
// Similarly, notify all invalidation listeners (i.e. those passed to
// `router.prefetch(onInvalidate)`), so they can trigger a new prefetch
// if needed.
pingInvalidationListeners(nextUrl, tree);
}
function attachInvalidationListener(task) {
// This function is called whenever a prefetch task reads a cache entry. If
// the task has an onInvalidate function associated with it — i.e. the one
// optionally passed to router.prefetch(onInvalidate) — then we attach that
// listener to the every cache entry that the task reads. Then, if an entry
// is invalidated, we call the function.
if (task.onInvalidate !== null) {
if (invalidationListeners === null) {
invalidationListeners = new Set([
task
]);
} else {
invalidationListeners.add(task);
}
}
}
function notifyInvalidationListener(task) {
const onInvalidate = task.onInvalidate;
if (onInvalidate !== null) {
// Clear the callback from the task object to guarantee it's not called more
// than once.
task.onInvalidate = null;
// This is a user-space function, so we must wrap in try/catch.
try {
onInvalidate();
} catch (error) {
if (typeof reportError === 'function') {
reportError(error);
} else {
console.error(error);
}
}
}
}
function pingInvalidationListeners(nextUrl, tree) {
// The rough equivalent of pingVisibleLinks, but for onInvalidate callbacks.
// This is called when the Next-Url or the base tree changes, since those
// may affect the result of a prefetch task. It's also called after a
// cache invalidation.
if (invalidationListeners !== null) {
const tasks = invalidationListeners;
invalidationListeners = null;
for (const task of tasks){
if ((0, _scheduler.isPrefetchTaskDirty)(task, nextUrl, tree)) {
notifyInvalidationListener(task);
}
}
}
}
function readExactRouteCacheEntry(now, href, nextUrl) {
const keypath = nextUrl === null ? [
href
] : [
href,
nextUrl
];
const existingEntry = routeCacheMap.get(keypath);
if (existingEntry !== null) {
// Check if the entry is stale
if (existingEntry.staleAt > now) {
// Reuse the existing entry.
// Since this is an access, move the entry to the front of the LRU.
routeCacheLru.put(existingEntry);
return existingEntry;
} else {
// Evict the stale entry from the cache.
deleteRouteFromCache(existingEntry, keypath);
}
}
return null;
}
function readRouteCacheEntry(now, key) {
// First check if there's a non-intercepted entry. Most routes cannot be
// intercepted, so this is the common case.
const nonInterceptedEntry = readExactRouteCacheEntry(now, key.href, null);
if (nonInterceptedEntry !== null && !nonInterceptedEntry.couldBeIntercepted) {
// Found a match, and the route cannot be intercepted. We can reuse it.
return nonInterceptedEntry;
}
// There was no match. Check again but include the Next-Url this time.
return readExactRouteCacheEntry(now, key.href, key.nextUrl);
}
function getSegmentKeypathForTask(task, route, cacheKey) {
// When a prefetch includes dynamic data, the search params are included
// in the result, so we must include the search string in the segment
// cache key. (Note that this is true even if the search string is empty.)
//
// If we're fetching using PPR, we do not need to include the search params in
// the cache key, because the search params are treated as dynamic data. The
// cache entry is valid for all possible search param values.
const isDynamicTask = task.fetchStrategy === _segmentcache.FetchStrategy.Full || task.fetchStrategy === _segmentcache.FetchStrategy.PPRRuntime || !route.isPPREnabled;
return isDynamicTask && cacheKey.endsWith('/' + _segment.PAGE_SEGMENT_KEY) ? [
cacheKey,
route.renderedSearch
] : [
cacheKey
];
}
function readSegmentCacheEntry(now, route, cacheKey) {
if (!cacheKey.endsWith('/' + _segment.PAGE_SEGMENT_KEY)) {
// Fast path. Search params only exist on page segments.
return readExactSegmentCacheEntry(now, [
cacheKey
]);
}
const renderedSearch = route.renderedSearch;
if (renderedSearch !== null) {
// Page segments may or may not contain search params. If they were prefetched
// using a dynamic request, then we will have an entry with search params.
// Check for that case first.
const entryWithSearchParams = readExactSegmentCacheEntry(now, [
cacheKey,
renderedSearch
]);
if (entryWithSearchParams !== null) {
return entryWithSearchParams;
}
}
// If we did not find an entry with the given search params, check for a
// "fallback" entry, where the search params are treated as dynamic data. This
// is the common case because PPR/static prerenders always treat search params
// as dynamic.
//
// See corresponding logic in `getSegmentKeypathForTask`.
const entryWithoutSearchParams = readExactSegmentCacheEntry(now, [
cacheKey
]);
return entryWithoutSearchParams;
}
function readExactSegmentCacheEntry(now, keypath) {
const existingEntry = segmentCacheMap.get(keypath);
if (existingEntry !== null) {
// Check if the entry is stale
if (existingEntry.staleAt > now) {
// Reuse the existing entry.
// Since this is an access, move the entry to the front of the LRU.
segmentCacheLru.put(existingEntry);
return existingEntry;
} else {
// This is a stale entry.
const revalidatingEntry = existingEntry.revalidating;
if (revalidatingEntry !== null) {
// There's a revalidation in progress. Upsert it.
const upsertedEntry = upsertSegmentEntry(now, keypath, revalidatingEntry);
if (upsertedEntry !== null && upsertedEntry.staleAt > now) {
// We can use the upserted revalidation entry.
return upsertedEntry;
}
} else {
// Evict the stale entry from the cache.
deleteSegmentFromCache(existingEntry, keypath);
}
}
}
return null;
}
function readRevalidatingSegmentCacheEntry(now, owner) {
const existingRevalidation = owner.revalidating;
if (existingRevalidation !== null) {
if (existingRevalidation.staleAt > now) {
// There's already a revalidation in progress. Or a previous revalidation
// failed and it has not yet expired.
return existingRevalidation;
} else {
// Clear the stale revalidation from its owner.
clearRevalidatingSegmentFromOwner(owner);
}
}
return null;
}
function waitForSegmentCacheEntry(pendingEntry) {
// Because the entry is pending, there's already a in-progress request.
// Attach a promise to the entry that will resolve when the server responds.
let promiseWithResolvers = pendingEntry.promise;
if (promiseWithResolvers === null) {
promiseWithResolvers = pendingEntry.promise = (0, _promisewithresolvers.createPromiseWithResolvers)();
} else {
// There's already a promise we can use
}
return promiseWithResolvers.promise;
}
function readOrCreateRouteCacheEntry(now, task) {
attachInvalidationListener(task);
const key = task.key;
const existingEntry = readRouteCacheEntry(now, key);
if (existingEntry !== null) {
return existingEntry;
}
// Create a pending entry and add it to the cache.
const pendingEntry = {
canonicalUrl: null,
status: 0,
blockedTasks: null,
tree: null,
head: null,
isHeadPartial: true,
// Since this is an empty entry, there's no reason to ever evict it. It will
// be updated when the data is populated.
staleAt: Infinity,
// This is initialized to true because we don't know yet whether the route
// could be intercepted. It's only set to false once we receive a response
// from the server.
couldBeIntercepted: true,
// Similarly, we don't yet know if the route supports PPR.
isPPREnabled: false,
renderedSearch: null,
TODO_metadataStatus: 0,
TODO_isHeadDynamic: false,
// LRU-related fields
keypath: null,
next: null,
prev: null,
size: 0
};
const keypath = key.nextUrl === null ? [
key.href
] : [
key.href,
key.nextUrl
];
routeCacheMap.set(keypath, pendingEntry);
// Stash the keypath on the entry so we know how to remove it from the map
// if it gets evicted from the LRU.
pendingEntry.keypath = keypath;
routeCacheLru.put(pendingEntry);
return pendingEntry;
}
function requestOptimisticRouteCacheEntry(now, requestedUrl, nextUrl) {
// This function is called during a navigation when there was no matching
// route tree in the prefetch cache. Before de-opting to a blocking,
// unprefetched navigation, we will first attempt to construct an "optimistic"
// route tree by checking the cache for similar routes.
//
// Check if there's a route with the same pathname, but with different
// search params. We can then base our optimistic route tree on this entry.
//
// Conceptually, we are simulating what would happen if we did perform a
// prefetch the requested URL, under the assumption that the server will
// not redirect or rewrite the request in a different manner than the
// base route tree. This assumption might not hold, in which case we'll have
// to recover when we perform the dynamic navigation request. However, this
// is what would happen if a route were dynamically rewritten/redirected
// in between the prefetch and the navigation. So the logic needs to exist
// to handle this case regardless.
// Look for a route with the same pathname, but with an empty search string.
// TODO: There's nothing inherently special about the empty search string;
// it's chosen somewhat arbitrarily, with the rationale that it's the most
// likely one to exist. But we should update this to match _any_ search
// string. The plan is to generalize this logic alongside other improvements
// related to "fallback" cache entries.
const requestedSearch = requestedUrl.search;
if (requestedSearch === '') {
// The caller would have already checked if a route with an empty search
// string is in the cache. So we can bail out here.
return null;
}
const routeWithNoSearchParams = readRouteCacheEntry(now, (0, _cachekey.createCacheKey)(requestedUrl.origin + requestedUrl.pathname, nextUrl));
if (routeWithNoSearchParams === null || routeWithNoSearchParams.status !== 2 || // There's no point constructing an optimistic route tree if the metadata
// isn't fully available, because we'll have to do a blocking
// navigation anyway.
routeWithNoSearchParams.isHeadPartial || // We cannot reuse this route if it has dynamic metadata.
// TODO: Move the metadata out of the route cache entry so the route
// tree is reusable separately from the metadata. Then we can remove
// these checks.
routeWithNoSearchParams.TODO_metadataStatus !== 0 || routeWithNoSearchParams.TODO_isHeadDynamic) {
// Bail out of constructing an optimistic route tree. This will result in
// a blocking, unprefetched navigation.
return null;
}
// Now we have a base route tree we can "patch" with our optimistic values.
// Optimistically assume that redirects for the requested pathname do
// not vary on the search string. Therefore, if the base route was
// redirected to a different search string, then the optimistic route
// should be redirected to the same search string. Otherwise, we use
// the requested search string.
const canonicalUrlForRouteWithNoSearchParams = new URL(routeWithNoSearchParams.canonicalUrl, requestedUrl.origin);
const optimisticCanonicalSearch = canonicalUrlForRouteWithNoSearchParams.search !== '' ? canonicalUrlForRouteWithNoSearchParams.search : requestedSearch;
// Similarly, optimistically assume that rewrites for the requested
// pathname do not vary on the search string. Therefore, if the base
// route was rewritten to a different search string, then the optimistic
// route should be rewritten to the same search string. Otherwise, we use
// the requested search string.
const optimisticRenderedSearch = routeWithNoSearchParams.renderedSearch !== '' ? routeWithNoSearchParams.renderedSearch : requestedSearch;
const optimisticUrl = new URL(routeWithNoSearchParams.canonicalUrl, location.origin);
optimisticUrl.search = optimisticCanonicalSearch;
const optimisticCanonicalUrl = (0, _createhreffromurl.createHrefFromUrl)(optimisticUrl);
// Clone the base route tree, and override the relevant fields with our
// optimistic values.
const optimisticEntry = {
canonicalUrl: optimisticCanonicalUrl,
status: 2,
// This isn't cloned because it's instance-specific
blockedTasks: null,
tree: routeWithNoSearchParams.tree,
head: routeWithNoSearchParams.head,
isHeadPartial: routeWithNoSearchParams.isHeadPartial,
staleAt: routeWithNoSearchParams.staleAt,
couldBeIntercepted: routeWithNoSearchParams.couldBeIntercepted,
isPPREnabled: routeWithNoSearchParams.isPPREnabled,
// Override the rendered search with the optimistic value.
renderedSearch: optimisticRenderedSearch,
TODO_metadataStatus: routeWithNoSearchParams.TODO_metadataStatus,
TODO_isHeadDynamic: routeWithNoSearchParams.TODO_isHeadDynamic,
// LRU-related fields
keypath: null,
next: null,
prev: null,
size: 0
};
// Do not insert this entry into the cache. It only exists so we can
// perform the current navigation. Just return it to the caller.
return optimisticEntry;
}
function readOrCreateSegmentCacheEntry(now, task, route, cacheKey) {
const keypath = getSegmentKeypathForTask(task, route, cacheKey);
const existingEntry = readExactSegmentCacheEntry(now, keypath);
if (existingEntry !== null) {
return existingEntry;
}
// Create a pending entry and add it to the cache.
const pendingEntry = createDetachedSegmentCacheEntry(route.staleAt);
segmentCacheMap.set(keypath, pendingEntry);
// Stash the keypath on the entry so we know how to remove it from the map
// if it gets evicted from the LRU.
pendingEntry.keypath = keypath;
segmentCacheLru.put(pendingEntry);
return pendingEntry;
}
function readOrCreateRevalidatingSegmentEntry(now, prevEntry) {
const existingRevalidation = readRevalidatingSegmentCacheEntry(now, prevEntry);
if (existingRevalidation !== null) {
return existingRevalidation;
}
const pendingEntry = createDetachedSegmentCacheEntry(prevEntry.staleAt);
// Background revalidations are not stored directly in the cache map or LRU;
// they're stashed on the entry that they will (potentially) replace.
//
// Note that we don't actually ever clear this field, except when the entry
// expires. When the revalidation finishes, one of two things will happen:
//
// 1) the revalidation is successful, `prevEntry` is removed from the cache
// and garbage collected (so there's no point clearing any of its fields)
// 2) the revalidation fails, and we'll use the `revalidating` field to
// prevent subsequent revalidation attempts, until it expires.
prevEntry.revalidating = pendingEntry;
return pendingEntry;
}
function upsertSegmentEntry(now, keypath, candidateEntry) {
// We have a new entry that has not yet been inserted into the cache. Before
// we do so, we need to confirm whether it takes precedence over the existing
// entry (if one exists).
// TODO: We should not upsert an entry if its key was invalidated in the time
// since the request was made. We can do that by passing the "owner" entry to
// this function and confirming it's the same as `existingEntry`.
const existingEntry = readExactSegmentCacheEntry(now, keypath);
if (existingEntry !== null) {
// Don't replace a more specific segment with a less-specific one. A case where this
// might happen is if the existing segment was fetched via
// `<Link prefetch={true}>`.
if (// We fetched the new segment using a different, less specific fetch strategy
// than the segment we already have in the cache, so it can't have more content.
candidateEntry.fetchStrategy !== existingEntry.fetchStrategy && !canNewFetchStrategyProvideMoreContent(existingEntry.fetchStrategy, candidateEntry.fetchStrategy) || // The existing entry isn't partial, but the new one is.
// (TODO: can this be true if `candidateEntry.fetchStrategy >= existingEntry.fetchStrategy`?)
!existingEntry.isPartial && candidateEntry.isPartial) {
// We're going to leave the entry on the owner's `revalidating` field
// so that it doesn't get revalidated again unnecessarily. Downgrade the
// Fulfilled entry to Rejected and null out the data so it can be garbage
// collected. We leave `staleAt` intact to prevent subsequent revalidation
// attempts only until the entry expires.
const rejectedEntry = candidateEntry;
rejectedEntry.status = 3;
rejectedEntry.loading = null;
rejectedEntry.rsc = null;
return null;
}
// Evict the existing entry from the cache.
deleteSegmentFromCache(existingEntry, keypath);
}
segmentCacheMap.set(keypath, candidateEntry);
// Stash the keypath on the entry so we know how to remove it from the map
// if it gets evicted from the LRU.
candidateEntry.keypath = keypath;
segmentCacheLru.put(candidateEntry);
return candidateEntry;
}
function createDetachedSegmentCacheEntry(staleAt) {
const emptyEntry = {
status: 0,
// Default to assuming the fetch strategy will be PPR. This will be updated
// when a fetch is actually initiated.
fetchStrategy: _segmentcache.FetchStrategy.PPR,
revalidating: null,
rsc: null,
loading: null,
staleAt,
isPartial: true,
promise: null,
// LRU-related fields
keypath: null,
next: null,
prev: null,
size: 0
};
return emptyEntry;
}
function upgradeToPendingSegment(emptyEntry, fetchStrategy) {
const pendingEntry = emptyEntry;
pendingEntry.status = 1;
pendingEntry.fetchStrategy = fetchStrategy;
return pendingEntry;
}
function deleteRouteFromCache(entry, keypath) {
pingBlockedTasks(entry);
routeCacheMap.delete(keypath);
routeCacheLru.delete(entry);
}
function deleteSegmentFromCache(entry, keypath) {
cancelEntryListeners(entry);
segmentCacheMap.delete(keypath);
segmentCacheLru.delete(entry);
clearRevalidatingSegmentFromOwner(entry);
}
function clearRevalidatingSegmentFromOwner(owner) {
// Revalidating segments are not stored in the cache directly; they're
// stored as a field on the entry that they will (potentially) replace. So
// to dispose of an existing revalidation, we just need to null out the field
// on the owner.
const revalidatingSegment = owner.revalidating;
if (revalidatingSegment !== null) {
cancelEntryListeners(revalidatingSegment);
owner.revalidating = null;
}
}
function resetRevalidatingSegmentEntry(owner) {
clearRevalidatingSegmentFromOwner(owner);
const emptyEntry = createDetachedSegmentCacheEntry(owner.staleAt);
owner.revalidating = emptyEntry;
return emptyEntry;
}
function onRouteLRUEviction(entry) {
// The LRU evicted this entry. Remove it from the map.
const keypath = entry.keypath;
if (keypath !== null) {
entry.keypath = null;
pingBlockedTasks(entry);
routeCacheMap.delete(keypath);
}
}
function onSegmentLRUEviction(entry) {
// The LRU evicted this entry. Remove it from the map.
const keypath = entry.keypath;
if (keypath !== null) {
entry.keypath = null;
cancelEntryListeners(entry);
segmentCacheMap.delete(keypath);
}
}
function cancelEntryListeners(entry) {
if (entry.status === 1 && entry.promise !== null) {
// There were listeners for this entry. Resolve them with `null` to indicate
// that the prefetch failed. It's up to the listener to decide how to handle
// this case.
// NOTE: We don't currently propagate the reason the prefetch was canceled
// but we could by accepting a `reason` argument.
entry.promise.resolve(null);
entry.promise = null;
}
}
function pingBlockedTasks(entry) {
const blockedTasks = entry.blockedTasks;
if (blockedTasks !== null) {
for (const task of blockedTasks){
(0, _scheduler.pingPrefetchTask)(task);
}
entry.blockedTasks = null;
}
}
function fulfillRouteCacheEntry(entry, tree, head, isHeadPartial, staleAt, couldBeIntercepted, canonicalUrl, renderedSearch, isPPREnabled, isHeadDynamic) {
const fulfilledEntry = entry;
fulfilledEntry.status = 2;
fulfilledEntry.tree = tree;
fulfilledEntry.head = head;
fulfilledEntry.isHeadPartial = isHeadPartial;
fulfilledEntry.staleAt = staleAt;
fulfilledEntry.couldBeIntercepted = couldBeIntercepted;
fulfilledEntry.canonicalUrl = canonicalUrl;
fulfilledEntry.renderedSearch = renderedSearch;
fulfilledEntry.isPPREnabled = isPPREnabled;
fulfilledEntry.TODO_isHeadDynamic = isHeadDynamic;
pingBlockedTasks(entry);
return fulfilledEntry;
}
function fulfillSegmentCacheEntry(segmentCacheEntry, rsc, loading, staleAt, isPartial) {
const fulfilledEntry = segmentCacheEntry;
fulfilledEntry.status = 2;
fulfilledEntry.rsc = rsc;
fulfilledEntry.loading = loading;
fulfilledEntry.staleAt = staleAt;
fulfilledEntry.isPartial = isPartial;
// Resolve any listeners that were waiting for this data.
if (segmentCacheEntry.promise !== null) {
segmentCacheEntry.promise.resolve(fulfilledEntry);
// Free the promise for garbage collection.
fulfilledEntry.promise = null;
}
return fulfilledEntry;
}
function rejectRouteCacheEntry(entry, staleAt) {
const rejectedEntry = entry;
rejectedEntry.status = 3;
rejectedEntry.staleAt = staleAt;
pingBlockedTasks(entry);
}
function rejectSegmentCacheEntry(entry, staleAt) {
const rejectedEntry = entry;
rejectedEntry.status = 3;
rejectedEntry.staleAt = staleAt;
if (entry.promise !== null) {
// NOTE: We don't currently propagate the reason the prefetch was canceled
// but we could by accepting a `reason` argument.
entry.promise.resolve(null);
entry.promise = null;
}
}
function convertRootTreePrefetchToRouteTree(rootTree, renderedPathname) {
// Remove trailing and leading slashes
const pathnameParts = renderedPathname.split('/').filter((p)=>p !== '');
const index = 0;
const rootSegment = _segmentvalueencoding.ROOT_SEGMENT_CACHE_KEY;
return convertTreePrefetchToRouteTree(rootTree.tree, rootSegment, null, _segmentvalueencoding.ROOT_SEGMENT_REQUEST_KEY, _segmentvalueencoding.ROOT_SEGMENT_CACHE_KEY, pathnameParts, index);
}
function convertTreePrefetchToRouteTree(prefetch, segment, param, requestKey, cacheKey, pathnameParts, pathnamePartsIndex) {
// Converts the route tree sent by the server into the format used by the
// cache. The cached version of the tree includes additional fields, such as a
// cache key for each segment. Since this is frequently accessed, we compute
// it once instead of on every access. This same cache key is also used to
// request the segment from the server.
let slots = null;
const prefetchSlots = prefetch.slots;
if (prefetchSlots !== null) {
slots = {};
for(let parallelRouteKey in prefetchSlots){
const childPrefetch = prefetchSlots[parallelRouteKey];
const childParamName = childPrefetch.name;
const childParamType = childPrefetch.paramType;
const childServerSentParamKey = childPrefetch.paramKey;
let childDoesAppearInURL;
let childParam = null;
let childSegment;
if (childParamType !== null) {
// This segment is parameterized. Get the param from the pathname.
const childParamValue = (0, _routeparams.parseDynamicParamFromURLPart)(childParamType, pathnameParts, pathnamePartsIndex);
// Assign a cache key to the segment, based on the param value. In the
// pre-Segment Cache implementation, the server computes this and sends
// it in the body of the response. In the Segment Cache implementation,
// the server sends an empty string and we fill it in here.
// TODO: We're intentionally not adding the search param to page
// segments here; it's tracked separately and added back during a read.
// This would clearer if we waited to construct the segment until it's
// read from the cache, since that's effectively what we're
// doing anyway.
const renderedSearch = '';
const childParamKey = // The server omits this field from the prefetch response when
// clientParamParsing is enabled. The flag only exists while we're
// testing the feature, in case there's a bug and we need to revert.
// TODO: Remove once clientParamParsing is enabled everywhere.
childServerSentParamKey !== null ? childServerSentParamKey : (0, _routeparams.getCacheKeyForDynamicParam)(childParamValue, renderedSearch);
childParam = {
name: childParamName,
value: childParamValue,
type: childParamType
};
childSegment = [
childParamName,
childParamKey,
childParamType
];
childDoesAppearInURL = true;
} else {
childSegment = childParamName;
childDoesAppearInURL = (0, _routeparams.doesStaticSegmentAppearInURL)(childParamName);
}
// Only increment the index if the segment appears in the URL. If it's a
// "virtual" segment, like a route group, it remains the same.
const childPathnamePartsIndex = childDoesAppearInURL ? pathnamePartsIndex + 1 : pathnamePartsIndex;
const childRequestKeyPart = (0, _segmentvalueencoding.createSegmentRequestKeyPart)(childSegment);
const childRequestKey = (0, _segmentvalueencoding.appendSegmentRequestKeyPart)(requestKey, parallelRouteKey, childRequestKeyPart);
const childCacheKey = (0, _segmentvalueencoding.appendSegmentCacheKeyPart)(cacheKey, parallelRouteKey, (0, _segmentvalueencoding.createSegmentCacheKeyPart)(childRequestKeyPart, childSegment));
slots[parallelRouteKey] = convertTreePrefetchToRouteTree(childPrefetch, childSegment, childParam, childRequestKey, childCacheKey, pathnameParts, childPathnamePartsIndex);
}
}
return {
cacheKey,
requestKey,
segment,
param,
slots,
isRootLayout: prefetch.isRootLayout,
// This field is only relevant to dynamic routes. For a PPR/static route,
// there's always some partial loading state we can fetch.
hasLoadingBoundary: _types.HasLoadingBoundary.SegmentHasLoadingBoundary
};
}
function convertRootFlightRouterStateToRouteTree(flightRouterState) {
return convertFlightRouterStateToRouteTree(flightRouterState, _segmentvalueencoding.ROOT_SEGMENT_CACHE_KEY, _segmentvalueencoding.ROOT_SEGMENT_REQUEST_KEY);
}
function convertFlightRouterStateToRouteTree(flightRouterState, cacheKey, requestKey) {
let slots = null;
const parallelRoutes = flightRouterState[1];
for(let parallelRouteKey in parallelRoutes){
const childRouterState = parallelRoutes[parallelRouteKey];
const childSegment = childRouterState[0];
// TODO: Eventually, the param values will not be included in the response
// from the server. We'll instead fill them in on the client by parsing
// the URL. This is where we'll do that.
const childRequestKeyPart = (0, _segmentvalueencoding.createSegmentRequestKeyPart)(childSegment);
const childRequestKey = (0, _segmentvalueencoding.appendSegmentRequestKeyPart)(requestKey, parallelRouteKey, childRequestKeyPart);
const childCacheKey = (0, _segmentvalueencoding.appendSegmentCacheKeyPart)(cacheKey, parallelRouteKey, (0, _segmentvalueencoding.createSegmentCacheKeyPart)(childRequestKeyPart, childSegment));
const childTree = convertFlightRouterStateToRouteTree(childRouterState, childCacheKey, childRequestKey);
if (slots === null) {
slots = {
[parallelRouteKey]: childTree
};
} else {
slots[parallelRouteKey] = childTree;
}
}
const originalSegment = flightRouterState[0];
let segment;
let param = null;
if (Array.isArray(originalSegment)) {
const paramCacheKey = originalSegment[1];
const paramType = originalSegment[2];
const paramValue = (0, _routeparams.getParamValueFromCacheKey)(paramCacheKey, paramType);
param = {
name: originalSegment[0],
value: paramValue === undefined ? null : paramValue,
type: originalSegment[2]
};
segment = originalSegment;
} else {
// The navigation implementation expects the search params to be included
// in the segment. However, in the case of a static response, the search
// params are omitted. So the client needs to add them back in when reading
// from the Segment Cache.
//
// For consistency, we'll do this for dynamic responses, too.
//
// TODO: We should move search params out of FlightRouterState and handle
// them entirely on the client, similar to our plan for dynamic params.
segment = typeof originalSegment === 'string' && originalSegment.startsWith(_segment.PAGE_SEGMENT_KEY) ? _segment.PAGE_SEGMENT_KEY : originalSegment;
}
return {
cacheKey,
requestKey,
segment,
param,
slots,
isRootLayout: flightRouterState[4] === true,
hasLoadingBoundary: flightRouterState[5] !== undefined ? flightRouterState[5] : _types.HasLoadingBoundary.SubtreeHasNoLoadingBoundary
};
}
function convertRouteTreeToFlightRouterState(routeTree) {
const parallelRoutes = {};
if (routeTree.slots !== null) {
for(const parallelRouteKey in routeTree.slots){
parallelRoutes[parallelRouteKey] = convertRouteTreeToFlightRouterState(routeTree.slots[parallelRouteKey]);
}
}
const flightRouterState = [
routeTree.segment,
parallelRoutes,
null,
null,
routeTree.isRootLayout
];
return flightRouterState;
}
async function fetchRouteOnCacheMiss(entry, task) {
// This function is allowed to use async/await because it contains the actual
// fetch that gets issued on a cache miss. Notice it writes the result to the
// cache entry directly, rather than return data that is then written by
// the caller.
const key = task.key;
const href = key.href;
const nextUrl = key.nextUrl;
const segmentPath = '/_tree';
const headers = {
[_approuterheaders.RSC_HEADER]: '1',
[_approuterheaders.NEXT_ROUTER_PREFETCH_HEADER]: '1',
[_approuterheaders.NEXT_ROUTER_SEGMENT_PREFETCH_HEADER]: segmentPath
};
if (nextUrl !== null) {
headers[_approuterheaders.NEXT_URL] = nextUrl;
}
try {
let response;
let urlAfterRedirects;
if (isOutputExportMode) {
// In output: "export" mode, we can't use headers to request a particular
// segment. Instead, we encode the extra request information into the URL.
// This is not part of the "public" interface of the app; it's an internal
// Next.js implementation detail that the app developer should not need to
// concern themselves with.
//
// For example, to request a segment:
//
// Path passed to <Link>: /path/to/page
// Path passed to fetch: /path/to/page/__next-segments/_tree
//
// (This is not the exact protocol, just an illustration.)
//
// Before we do that, though, we need to account for redirects. Even in
// output: "export" mode, a proxy might redirect the page to a different
// location, but we shouldn't assume or expect that they also redirect all
// the segment files, too.
//
// To check whether the page is redirected, we perform a range request of
// the first N bytes of the HTML document. The canonical URL is determined
// from the response.
//
// Then we can use the canonical URL to request the route tree.
//
// NOTE: We could embed the route tree into the HTML document, to avoid
// a second request. We're not doing that currently because it would make
// the HTML document larger and affect normal page loads.
const url = new URL(href);
const htmlResponse = await fetch(href, {
headers: {
Range: _outputexportprefetchencoding.DOC_PREFETCH_RANGE_HEADER_VALUE
}
});
const partialHtml = await htmlResponse.text();
if (!(0, _outputexportprefetchencoding.doesExportedHtmlMatchBuildId)(partialHtml, (0, _appbuildid.getAppBuildId)())) {
// The target page is not part of this app, or it belongs to a
// different build.
rejectRouteCacheEntry(entry, Date.now() + 10 * 1000);
return null;
}
urlAfterRedirects = htmlResponse.redirected ? new URL(htmlResponse.url) : url;
response = await fetchPrefetchResponse(addSegmentPathToUrlInOutputExportMode(urlAfterRedirects, segmentPath), headers);
} else {
// "Server" mode. We can use request headers instead of the pathname.
// TODO: The eventual plan is to get rid of our custom request headers and
// encode everything into the URL, using a similar strategy to the
// "output: export" block above.
const url = new URL(href);
response = await fetchPrefetchResponse(url, headers);
urlAfterRedirects = response !== null && response.redirected ? new URL(response.url) : url;
}
if (!response || !response.ok || // 204 is a Cache miss. Though theoretically this shouldn't happen when
// PPR is enabled, because we always respond to route tree requests, even
// if it needs to be blockingly generated on demand.
response.status === 204 || !response.body) {
// Server responded with an error, or with a miss. We should still cache
// the response, but we can try again after 10 seconds.
rejectRouteCacheEntry(entry, Date.now() + 10 * 1000);
return null;
}
// TODO: The canonical URL is the href without the origin. I think
// historically the reason for this is because the initial canonical URL
// gets passed as a prop to the top-level React component, which means it
// needs to be computed during SSR. If it were to include the origin, it
// would need to always be same as location.origin on the client, to prevent
// a hydration mismatch. To sidestep this complexity, we omit the origin.
//
// However, since this is neither a native URL object nor a fully qualified
// URL string, we need to be careful about how we use it. To prevent subtle
// mistakes, we should create a special type for it, instead of just string.
// Or, we should just use a (readonly) URL object instead. The type of the
// prop that we pass to seed the initial state does not need to be the same
// type as the state itself.
const canonicalUrl = (0, _createhreffromurl.createHrefFromUrl)(urlAfterRedirects);
// Check whether the response varies based on the Next-Url header.
const varyHeader = response.headers.get('vary');
const couldBeIntercepted = varyHeader !== null && varyHeader.includes(_approuterheaders.NEXT_URL);
// Track when the network connection closes.
const closed = (0, _promisewithresolvers.createPromiseWithResolvers)();
// This checks whether the response was served from the per-segment cache,
// rather than the old prefetching flow. If it fails, it implies that PPR
// is disabled on this route.
const routeIsPPREnabled = response.headers.get(_approuterheaders.NEXT_DID_POSTPONE_HEADER) === '2' || // In output: "export" mode, we can't rely on response headers. But if we
// receive a well-formed response, we can assume it's a static response,
// because all data is static in this mode.
isOutputExportMode;
// Regardless of the type of response, we will never receive dynamic
// metadata as part of this prefetch request.
const isHeadDynamic = false;
if (routeIsPPREnabled) {
const prefetchStream = createPrefetchResponseStream(response.body, closed.resolve, function onResponseSizeUpdate(size) {
routeCacheLru.updateSize(entry, size);
});
const serverData = await (0, _fetchserverresponse.createFromNextReadableStream)(prefetchStream);
if (serverData.buildId !== (0, _appbuildid.getAppBuildId)()) {
// The server build does not match the client. Treat as a 404. During
// an actual navigation, the router will trigger an MPA navigation.
// TODO: Consider moving the build ID to a response header so we can check
// it before decoding the response, and so there's one way of checking
// across all response types.
// TODO: We should cache the fact that this is an MPA navigation.
rejectRouteCacheEntry(entry, Date.now() + 10 * 1000);
return null;
}
// Get the params that were used to render the target page. These may
// be different from the params in the request URL, if the page
// was rewritten.
const renderedPathname = (0, _routeparams.getRenderedPathname)(response);
const renderedSearch = (0, _routeparams.getRenderedSearch)(response);
const routeTree = convertRootTreePrefetchToRouteTree(serverData, renderedPathname);
const staleTimeMs = getStaleTimeMs(serverData.staleTime);
fulfillRouteCacheEntry(entry, routeTree, serverData.head, serverData.isHeadPartial, Date.now() + staleTimeMs, couldBeIntercepted, canonicalUrl, renderedSearch, routeIsPPREnabled, isHeadDynamic);
} else {
// PPR is not enabled for this route. The server responds with a
// different format (FlightRouterState) that we need to convert.
// TODO: We will unify the responses eventually. I'm keeping the types
// separate for now because FlightRouterState has so many
// overloaded concerns.
const prefetchStream = createPrefetchResponseStream(response.body, closed.resolve, function onResponseSizeUpdate(size) {
routeCacheLru.updateSize(entry, size);
});
const serverData = await (0, _fetchserverresponse.createFromNextReadableStream)(prefetchStream);
if (serverData.b !== (0, _appbuildid.getAppBuildId)()) {
// The server build does not match the client. Treat as a 404. During
// an actual navigation, the router will trigger an MPA navigation.
// TODO: Consider moving the build ID to a response header so we can check
// it before decoding the response, and so there's one way of checking
// across all response types.
// TODO: We should cache the fact that this is an MPA navigation.
rejectRouteCacheEntry(entry, Date.now() + 10 * 1000);
return null;
}
writeDynamicTreeResponseIntoCache(Date.now(), task, // The non-PPR response format is what we'd get if we prefetched these segments
// using the LoadingBoundary fetch strategy, so mark their cache entries accordingly.
_segmentcache.FetchStrategy.LoadingBoundary, response, serverData, entry, couldBeIntercepted, canonicalUrl, routeIsPPREnabled);
}
if (!couldBeIntercepted && nextUrl !== null) {
// This route will never be intercepted. So we can use this entry for all
// requests to this route, regardless of the Next-Url header. This works
// because when reading the cache we always check for a valid
// non-intercepted entry first.
//
// Re-key the entry. Since we're in an async task, we must first confirm
// that the entry hasn't been concurrently modified by a different ta