net-snmp
Version:
JavaScript implementation of the Simple Network Management Protocol (SNMP)
1,156 lines (829 loc) • 194 kB
Plain Text
Network Working Group U. Blumenthal
Request for Comments: 3414 B. Wijnen
STD: 62 Lucent Technologies
Obsoletes: 2574 December 2002
Category: Standards Track
User-based Security Model (USM) for version 3 of the
Simple Network Management Protocol (SNMPv3)
Status of this Memo
This document specifies an Internet standards track protocol for the
Internet community, and requests discussion and suggestions for
improvements. Please refer to the current edition of the "Internet
Official Protocol Standards" (STD 1) for the standardization state
and status of this protocol. Distribution of this memo is unlimited.
Copyright Notice
Copyright (C) The Internet Society (2002). All Rights Reserved.
Abstract
This document describes the User-based Security Model (USM) for
Simple Network Management Protocol (SNMP) version 3 for use in the
SNMP architecture. It defines the Elements of Procedure for
providing SNMP message level security. This document also includes a
Management Information Base (MIB) for remotely monitoring/managing
the configuration parameters for this Security Model. This document
obsoletes RFC 2574.
Table of Contents
1. Introduction.......................................... 4
1.1. Threats............................................... 4
1.2. Goals and Constraints................................. 6
1.3. Security Services..................................... 6
1.4. Module Organization................................... 7
1.4.1. Timeliness Module..................................... 8
1.4.2. Authentication Protocol............................... 8
1.4.3. Privacy Protocol...................................... 8
1.5. Protection against Message Replay, Delay
and Redirection....................................... 9
1.5.1. Authoritative SNMP engine............................. 9
1.5.2. Mechanisms............................................ 9
1.6. Abstract Service Interfaces........................... 11
Blumenthal & Wijnen Standards Track [Page 1]
RFC 3414 USM for SNMPv3 December 2002
1.6.1. User-based Security Model Primitives
for Authentication.................................... 11
1.6.2. User-based Security Model Primitives
for Privacy........................................... 12
2. Elements of the Model................................. 12
2.1. User-based Security Model Users....................... 12
2.2. Replay Protection..................................... 13
2.2.1. msgAuthoritativeEngineID.............................. 14
2.2.2. msgAuthoritativeEngineBoots and
msgAuthoritativeEngineTime............................ 14
2.2.3. Time Window........................................... 15
2.3. Time Synchronization.................................. 15
2.4. SNMP Messages Using this Security Model............... 16
2.5. Services provided by the User-based Security Model.... 17
2.5.1. Services for Generating an Outgoing SNMP Message...... 17
2.5.2. Services for Processing an Incoming SNMP Message...... 20
2.6. Key Localization Algorithm............................ 22
3. Elements of Procedure................................. 22
3.1. Generating an Outgoing SNMP Message................... 22
3.2. Processing an Incoming SNMP Message................... 26
4. Discovery............................................. 31
5. Definitions........................................... 32
6. HMAC-MD5-96 Authentication Protocol................... 51
6.1. Mechanisms............................................ 51
6.1.1. Digest Authentication Mechanism....................... 51
6.2. Elements of the Digest Authentication Protocol........ 52
6.2.1. Users................................................. 52
6.2.2. msgAuthoritativeEngineID.............................. 53
6.2.3. SNMP Messages Using this Authentication Protocol...... 53
6.2.4. Services provided by the HMAC-MD5-96
Authentication Module................................. 53
6.2.4.1. Services for Generating an Outgoing SNMP Message...... 53
6.2.4.2. Services for Processing an Incoming SNMP Message...... 54
6.3. Elements of Procedure................................. 55
6.3.1. Processing an Outgoing Message........................ 55
6.3.2. Processing an Incoming Message........................ 56
7. HMAC-SHA-96 Authentication Protocol................... 57
7.1. Mechanisms............................................ 57
7.1.1. Digest Authentication Mechanism....................... 57
7.2. Elements of the HMAC-SHA-96 Authentication Protocol... 58
7.2.1. Users................................................. 58
7.2.2. msgAuthoritativeEngineID.............................. 58
7.2.3. SNMP Messages Using this Authentication Protocol...... 59
7.2.4. Services provided by the HMAC-SHA-96
Authentication Module................................. 59
7.2.4.1. Services for Generating an Outgoing SNMP Message...... 59
7.2.4.2. Services for Processing an Incoming SNMP Message...... 60
7.3. Elements of Procedure................................. 61
Blumenthal & Wijnen Standards Track [Page 2]
RFC 3414 USM for SNMPv3 December 2002
7.3.1. Processing an Outgoing Message........................ 61
7.3.2. Processing an Incoming Message........................ 61
8. CBC-DES Symmetric Encryption Protocol................. 63
8.1. Mechanisms............................................ 63
8.1.1. Symmetric Encryption Protocol......................... 63
8.1.1.1. DES key and Initialization Vector..................... 64
8.1.1.2. Data Encryption....................................... 65
8.1.1.3. Data Decryption....................................... 65
8.2. Elements of the DES Privacy Protocol.................. 65
8.2.1. Users................................................. 65
8.2.2. msgAuthoritativeEngineID.............................. 66
8.2.3. SNMP Messages Using this Privacy Protocol............. 66
8.2.4. Services provided by the DES Privacy Module........... 66
8.2.4.1. Services for Encrypting Outgoing Data................. 66
8.2.4.2. Services for Decrypting Incoming Data................. 67
8.3. Elements of Procedure................................. 68
8.3.1. Processing an Outgoing Message........................ 68
8.3.2. Processing an Incoming Message........................ 69
9. Intellectual Property................................. 69
10. Acknowledgements...................................... 70
11. Security Considerations............................... 71
11.1. Recommended Practices................................. 71
11.2. Defining Users........................................ 73
11.3. Conformance........................................... 74
11.4. Use of Reports........................................ 75
11.5. Access to the SNMP-USER-BASED-SM-MIB.................. 75
12. References............................................ 75
A.1. SNMP engine Installation Parameters................... 78
A.2. Password to Key Algorithm............................. 80
A.2.1. Password to Key Sample Code for MD5................... 81
A.2.2. Password to Key Sample Code for SHA................... 82
A.3. Password to Key Sample Results........................ 83
A.3.1. Password to Key Sample Results using MD5.............. 83
A.3.2. Password to Key Sample Results using SHA.............. 83
A.4. Sample encoding of msgSecurityParameters.............. 83
A.5. Sample keyChange Results.............................. 84
A.5.1. Sample keyChange Results using MD5.................... 84
A.5.2. Sample keyChange Results using SHA.................... 85
B. Change Log............................................ 86
Editors' Addresses.................................... 87
Full Copyright Statement.............................. 88
Blumenthal & Wijnen Standards Track [Page 3]
RFC 3414 USM for SNMPv3 December 2002
1. Introduction
The Architecture for describing Internet Management Frameworks
[RFC3411] describes that an SNMP engine is composed of:
1) a Dispatcher,
2) a Message Processing Subsystem,
3) a Security Subsystem, and
4) an Access Control Subsystem.
Applications make use of the services of these subsystems.
It is important to understand the SNMP architecture and the
terminology of the architecture to understand where the Security
Model described in this document fits into the architecture and
interacts with other subsystems within the architecture. The reader
is expected to have read and understood the description of the SNMP
architecture, as defined in [RFC3411].
This memo describes the User-based Security Model as it is used
within the SNMP Architecture. The main idea is that we use the
traditional concept of a user (identified by a userName) with which
to associate security information.
This memo describes the use of HMAC-MD5-96 and HMAC-SHA-96 as the
authentication protocols and the use of CBC-DES as the privacy
protocol. The User-based Security Model however allows for other
such protocols to be used instead of or concurrent with these
protocols. Therefore, the description of HMAC-MD5-96, HMAC-SHA-96
and CBC-DES are in separate sections to reflect their self-contained
nature and to indicate that they can be replaced or supplemented in
the future.
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
document are to be interpreted as described in [RFC2119].
1.1. Threats
Several of the classical threats to network protocols are applicable
to the network management problem and therefore would be applicable
to any SNMP Security Model. Other threats are not applicable to the
network management problem. This section discusses principal
threats, secondary threats, and threats which are of lesser
importance.
The principal threats against which this SNMP Security Model should
provide protection are:
Blumenthal & Wijnen Standards Track [Page 4]
RFC 3414 USM for SNMPv3 December 2002
- Modification of Information The modification threat is the danger
that some unauthorized entity may alter in-transit SNMP messages
generated on behalf of an authorized principal in such a way as to
effect unauthorized management operations, including falsifying the
value of an object.
- Masquerade The masquerade threat is the danger that management
operations not authorized for some user may be attempted by
assuming the identity of another user that has the appropriate
authorizations.
Two secondary threats are also identified. The Security Model
defined in this memo provides limited protection against:
- Disclosure The disclosure threat is the danger of eavesdropping on
the exchanges between managed agents and a management station.
Protecting against this threat may be required as a matter of local
policy.
- Message Stream Modification The SNMP protocol is typically based
upon a connection-less transport service which may operate over any
sub-network service. The re-ordering, delay or replay of messages
can and does occur through the natural operation of many such sub-
network services. The message stream modification threat is the
danger that messages may be maliciously re-ordered, delayed or
replayed to an extent which is greater than can occur through the
natural operation of a sub-network service, in order to effect
unauthorized management operations.
There are at least two threats that an SNMP Security Model need not
protect against. The security protocols defined in this memo do not
provide protection against:
- Denial of Service This SNMP Security Model does not attempt to
address the broad range of attacks by which service on behalf of
authorized users is denied. Indeed, such denial-of-service attacks
are in many cases indistinguishable from the type of network
failures with which any viable network management protocol must
cope as a matter of course.
- Traffic Analysis This SNMP Security Model does not attempt to
address traffic analysis attacks. Indeed, many traffic patterns
are predictable - devices may be managed on a regular basis by a
relatively small number of management applications - and therefore
there is no significant advantage afforded by protecting against
traffic analysis.
Blumenthal & Wijnen Standards Track [Page 5]
RFC 3414 USM for SNMPv3 December 2002
1.2. Goals and Constraints
Based on the foregoing account of threats in the SNMP network
management environment, the goals of this SNMP Security Model are as
follows.
1) Provide for verification that each received SNMP message has not
been modified during its transmission through the network.
2) Provide for verification of the identity of the user on whose
behalf a received SNMP message claims to have been generated.
3) Provide for detection of received SNMP messages, which request or
contain management information, whose time of generation was not
recent.
4) Provide, when necessary, that the contents of each received SNMP
message are protected from disclosure.
In addition to the principal goal of supporting secure network
management, the design of this SNMP Security Model is also influenced
by the following constraints:
1) When the requirements of effective management in times of network
stress are inconsistent with those of security, the design of USM
has given preference to the former.
2) Neither the security protocol nor its underlying security
mechanisms should depend upon the ready availability of other
network services (e.g., Network Time Protocol (NTP) or key
management protocols).
3) A security mechanism should entail no changes to the basic SNMP
network management philosophy.
1.3. Security Services
The security services necessary to support the goals of this SNMP
Security Model are as follows:
- Data Integrity is the provision of the property that data has not
been altered or destroyed in an unauthorized manner, nor have data
sequences been altered to an extent greater than can occur non-
maliciously.
- Data Origin Authentication is the provision of the property that
the claimed identity of the user on whose behalf received data was
originated is corroborated.
Blumenthal & Wijnen Standards Track [Page 6]
RFC 3414 USM for SNMPv3 December 2002
- Data Confidentiality is the provision of the property that
information is not made available or disclosed to unauthorized
individuals, entities, or processes.
- Message timeliness and limited replay protection is the provision
of the property that a message whose generation time is outside of
a specified time window is not accepted. Note that message
reordering is not dealt with and can occur in normal conditions
too.
For the protocols specified in this memo, it is not possible to
assure the specific originator of a received SNMP message; rather, it
is the user on whose behalf the message was originated that is
authenticated.
For these protocols, it not possible to obtain data integrity without
data origin authentication, nor is it possible to obtain data origin
authentication without data integrity. Further, there is no
provision for data confidentiality without both data integrity and
data origin authentication.
The security protocols used in this memo are considered acceptably
secure at the time of writing. However, the procedures allow for new
authentication and privacy methods to be specified at a future time
if the need arises.
1.4. Module Organization
The security protocols defined in this memo are split in three
different modules and each has its specific responsibilities such
that together they realize the goals and security services described
above:
- The authentication module MUST provide for:
- Data Integrity,
- Data Origin Authentication,
- The timeliness module MUST provide for:
- Protection against message delay or replay (to an extent greater
than can occur through normal operation).
- The privacy module MUST provide for
- Protection against disclosure of the message payload.
Blumenthal & Wijnen Standards Track [Page 7]
RFC 3414 USM for SNMPv3 December 2002
The timeliness module is fixed for the User-based Security Model
while there is provision for multiple authentication and/or privacy
modules, each of which implements a specific authentication or
privacy protocol respectively.
1.4.1. Timeliness Module
Section 3 (Elements of Procedure) uses the timeliness values in an
SNMP message to do timeliness checking. The timeliness check is only
performed if authentication is applied to the message. Since the
complete message is checked for integrity, we can assume that the
timeliness values in a message that passes the authentication module
are trustworthy.
1.4.2. Authentication Protocol
Section 6 describes the HMAC-MD5-96 authentication protocol which is
the first authentication protocol that MUST be supported with the
User-based Security Model. Section 7 describes the HMAC-SHA-96
authentication protocol which is another authentication protocol that
SHOULD be supported with the User-based Security Model. In the
future additional or replacement authentication protocols may be
defined as new needs arise.
The User-based Security Model prescribes that, if authentication is
used, then the complete message is checked for integrity in the
authentication module.
For a message to be authenticated, it needs to pass authentication
check by the authentication module and the timeliness check which is
a fixed part of this User-based Security model.
1.4.3. Privacy Protocol
Section 8 describes the CBC-DES Symmetric Encryption Protocol which
is the first privacy protocol to be used with the User-based Security
Model. In the future additional or replacement privacy protocols may
be defined as new needs arise.
The User-based Security Model prescribes that the scopedPDU is
protected from disclosure when a message is sent with privacy.
The User-based Security Model also prescribes that a message needs to
be authenticated if privacy is in use.
Blumenthal & Wijnen Standards Track [Page 8]
RFC 3414 USM for SNMPv3 December 2002
1.5. Protection against Message Replay, Delay and Redirection
1.5.1. Authoritative SNMP Engine
In order to protect against message replay, delay and redirection,
one of the SNMP engines involved in each communication is designated
to be the authoritative SNMP engine. When an SNMP message contains a
payload which expects a response (those messages that contain a
Confirmed Class PDU [RFC3411]), then the receiver of such messages is
authoritative. When an SNMP message contains a payload which does
not expect a response (those messages that contain an Unconfirmed
Class PDU [RFC3411]), then the sender of such a message is
authoritative.
1.5.2. Mechanisms
The following mechanisms are used:
1) To protect against the threat of message delay or replay (to an
extent greater than can occur through normal operation), a set of
timeliness indicators (for the authoritative SNMP engine) are
included in each message generated. An SNMP engine evaluates the
timeliness indicators to determine if a received message is
recent. An SNMP engine may evaluate the timeliness indicators to
ensure that a received message is at least as recent as the last
message it received from the same source. A non-authoritative
SNMP engine uses received authentic messages to advance its notion
of the timeliness indicators at the remote authoritative source.
An SNMP engine MUST also use a mechanism to match incoming
Responses to outstanding Requests and it MUST drop any Responses
that do not match an outstanding request. For example, a msgID
can be inserted in every message to cater for this functionality.
These mechanisms provide for the detection of authenticated
messages whose time of generation was not recent.
This protection against the threat of message delay or replay does
not imply nor provide any protection against unauthorized deletion
or suppression of messages. Also, an SNMP engine may not be able
to detect message reordering if all the messages involved are sent
within the Time Window interval. Other mechanisms defined
independently of the security protocol can also be used to detect
the re-ordering replay, deletion, or suppression of messages
containing Set operations (e.g., the MIB variable snmpSetSerialNo
[RFC3418]).
Blumenthal & Wijnen Standards Track [Page 9]
RFC 3414 USM for SNMPv3 December 2002
2) Verification that a message sent to/from one authoritative SNMP
engine cannot be replayed to/as-if-from another authoritative SNMP
engine.
Included in each message is an identifier unique to the
authoritative SNMP engine associated with the sender or intended
recipient of the message.
A message containing an Unconfirmed Class PDU sent by an
authoritative SNMP engine to one non-authoritative SNMP engine can
potentially be replayed to another non-authoritative SNMP engine.
The latter non-authoritative SNMP engine might (if it knows about
the same userName with the same secrets at the authoritative SNMP
engine) as a result update its notion of timeliness indicators of
the authoritative SNMP engine, but that is not considered a
threat. In this case, A Report or Response message will be
discarded by the Message Processing Model, because there should
not be an outstanding Request message. A Trap will possibly be
accepted. Again, that is not considered a threat, because the
communication was authenticated and timely. It is as if the
authoritative SNMP engine was configured to start sending Traps to
the second SNMP engine, which theoretically can happen without the
knowledge of the second SNMP engine anyway. Anyway, the second
SNMP engine may not expect to receive this Trap, but is allowed to
see the management information contained in it.
3) Detection of messages which were not recently generated.
A set of time indicators are included in the message, indicating
the time of generation. Messages without recent time indicators
are not considered authentic. In addition, an SNMP engine MUST
drop any Responses that do not match an outstanding request. This
however is the responsibility of the Message Processing Model.
This memo allows the same user to be defined on multiple SNMP
engines. Each SNMP engine maintains a value, snmpEngineID, which
uniquely identifies the SNMP engine. This value is included in each
message sent to/from the SNMP engine that is authoritative (see
section 1.5.1). On receipt of a message, an authoritative SNMP
engine checks the value to ensure that it is the intended recipient,
and a non-authoritative SNMP engine uses the value to ensure that the
message is processed using the correct state information.
Each SNMP engine maintains two values, snmpEngineBoots and
snmpEngineTime, which taken together provide an indication of time at
that SNMP engine. Both of these values are included in an
authenticated message sent to/received from that SNMP engine. On
receipt, the values are checked to ensure that the indicated
Blumenthal & Wijnen Standards Track [Page 10]
RFC 3414 USM for SNMPv3 December 2002
timeliness value is within a Time Window of the current time. The
Time Window represents an administrative upper bound on acceptable
delivery delay for protocol messages.
For an SNMP engine to generate a message which an authoritative SNMP
engine will accept as authentic, and to verify that a message
received from that authoritative SNMP engine is authentic, such an
SNMP engine must first achieve timeliness synchronization with the
authoritative SNMP engine. See section 2.3.
1.6. Abstract Service Interfaces
Abstract service interfaces have been defined to describe the
conceptual interfaces between the various subsystems within an SNMP
entity. Similarly a set of abstract service interfaces have been
defined within the User-based Security Model (USM) to describe the
conceptual interfaces between the generic USM services and the
self-contained authentication and privacy services.
These abstract service interfaces are defined by a set of primitives
that define the services provided and the abstract data elements that
must be passed when the services are invoked. This section lists the
primitives that have been defined for the User-based Security Model.
1.6.1. User-based Security Model Primitives for Authentication
The User-based Security Model provides the following internal
primitives to pass data back and forth between the Security Model
itself and the authentication service:
statusInformation =
authenticateOutgoingMsg(
IN authKey -- secret key for authentication
IN wholeMsg -- unauthenticated complete message
OUT authenticatedWholeMsg -- complete authenticated message
)
statusInformation =
authenticateIncomingMsg(
IN authKey -- secret key for authentication
IN authParameters -- as received on the wire
IN wholeMsg -- as received on the wire
OUT authenticatedWholeMsg -- complete authenticated message
)
Blumenthal & Wijnen Standards Track [Page 11]
RFC 3414 USM for SNMPv3 December 2002
1.6.2. User-based Security Model Primitives for Privacy
The User-based Security Model provides the following internal
primitives to pass data back and forth between the Security Model
itself and the privacy service:
statusInformation =
encryptData(
IN encryptKey -- secret key for encryption
IN dataToEncrypt -- data to encrypt (scopedPDU)
OUT encryptedData -- encrypted data (encryptedPDU)
OUT privParameters -- filled in by service provider
)
statusInformation =
decryptData(
IN decryptKey -- secret key for decrypting
IN privParameters -- as received on the wire
IN encryptedData -- encrypted data (encryptedPDU)
OUT decryptedData -- decrypted data (scopedPDU)
)
2. Elements of the Model
This section contains definitions required to realize the security
model defined by this memo.
2.1. User-based Security Model Users
Management operations using this Security Model make use of a defined
set of user identities. For any user on whose behalf management
operations are authorized at a particular SNMP engine, that SNMP
engine must have knowledge of that user. An SNMP engine that wishes
to communicate with another SNMP engine must also have knowledge of a
user known to that engine, including knowledge of the applicable
attributes of that user.
A user and its attributes are defined as follows:
userName
A string representing the name of the user.
securityName
A human-readable string representing the user in a format that is
Security Model independent. There is a one-to-one relationship
between userName and securityName.
Blumenthal & Wijnen Standards Track [Page 12]
RFC 3414 USM for SNMPv3 December 2002
authProtocol
An indication of whether messages sent on behalf of this user can
be authenticated, and if so, the type of authentication protocol
which is used. Two such protocols are defined in this memo:
- the HMAC-MD5-96 authentication protocol.
- the HMAC-SHA-96 authentication protocol.
authKey
If messages sent on behalf of this user can be authenticated, the
(private) authentication key for use with the authentication
protocol. Note that a user's authentication key will normally be
different at different authoritative SNMP engines. The authKey is
not accessible via SNMP. The length requirements of the authKey
are defined by the authProtocol in use.
authKeyChange and authOwnKeyChange
The only way to remotely update the authentication key. Does that
in a secure manner, so that the update can be completed without
the need to employ privacy protection.
privProtocol
An indication of whether messages sent on behalf of this user can
be protected from disclosure, and if so, the type of privacy
protocol which is used. One such protocol is defined in this
memo: the CBC-DES Symmetric Encryption Protocol.
privKey
If messages sent on behalf of this user can be en/decrypted, the
(private) privacy key for use with the privacy protocol. Note
that a user's privacy key will normally be different at different
authoritative SNMP engines. The privKey is not accessible via
SNMP. The length requirements of the privKey are defined by the
privProtocol in use.
privKeyChange and privOwnKeyChange
The only way to remotely update the encryption key. Does that in
a secure manner, so that the update can be completed without the
need to employ privacy protection.
2.2. Replay Protection
Each SNMP engine maintains three objects:
- snmpEngineID, which (at least within an administrative domain)
uniquely and unambiguously identifies an SNMP engine.
Blumenthal & Wijnen Standards Track [Page 13]
RFC 3414 USM for SNMPv3 December 2002
- snmpEngineBoots, which is a count of the number of times the SNMP
engine has re-booted/re-initialized since snmpEngineID was last
configured; and,
- snmpEngineTime, which is the number of seconds since the
snmpEngineBoots counter was last incremented.
Each SNMP engine is always authoritative with respect to these
objects in its own SNMP entity. It is the responsibility of a non-
authoritative SNMP engine to synchronize with the authoritative SNMP
engine, as appropriate.
An authoritative SNMP engine is required to maintain the values of
its snmpEngineID and snmpEngineBoots in non-volatile storage.
2.2.1. msgAuthoritativeEngineID
The msgAuthoritativeEngineID value contained in an authenticated
message is used to defeat attacks in which messages from one SNMP
engine to another SNMP engine are replayed to a different SNMP
engine. It represents the snmpEngineID at the authoritative SNMP
engine involved in the exchange of the message.
When an authoritative SNMP engine is first installed, it sets its
local value of snmpEngineID according to a enterprise-specific
algorithm (see the definition of the Textual Convention for
SnmpEngineID in the SNMP Architecture document [RFC3411]).
2.2.2. msgAuthoritativeEngineBoots and msgAuthoritativeEngineTime
The msgAuthoritativeEngineBoots and msgAuthoritativeEngineTime values
contained in an authenticated message are used to defeat attacks in
which messages are replayed when they are no longer valid. They
represent the snmpEngineBoots and snmpEngineTime values at the
authoritative SNMP engine involved in the exchange of the message.
Through use of snmpEngineBoots and snmpEngineTime, there is no
requirement for an SNMP engine to have a non-volatile clock which
ticks (i.e., increases with the passage of time) even when the
SNMP engine is powered off. Rather, each time an SNMP engine
re-boots, it retrieves, increments, and then stores snmpEngineBoots
in non-volatile storage, and resets snmpEngineTime to zero.
When an SNMP engine is first installed, it sets its local values of
snmpEngineBoots and snmpEngineTime to zero. If snmpEngineTime ever
reaches its maximum value (2147483647), then snmpEngineBoots is
incremented as if the SNMP engine has re-booted and snmpEngineTime is
reset to zero and starts incrementing again.
Blumenthal & Wijnen Standards Track [Page 14]
RFC 3414 USM for SNMPv3 December 2002
Each time an authoritative SNMP engine re-boots, any SNMP engines
holding that authoritative SNMP engine's values of snmpEngineBoots
and snmpEngineTime need to re-synchronize prior to sending correctly
authenticated messages to that authoritative SNMP engine (see Section
2.3 for (re-)synchronization procedures). Note, however, that the
procedures do provide for a notification to be accepted as authentic
by a receiving SNMP engine, when sent by an authoritative SNMP engine
which has re-booted since the receiving SNMP engine last (re-
)synchronized.
If an authoritative SNMP engine is ever unable to determine its
latest snmpEngineBoots value, then it must set its snmpEngineBoots
value to 2147483647.
Whenever the local value of snmpEngineBoots has the value 2147483647
it latches at that value and an authenticated message always causes
an notInTimeWindow authentication failure.
In order to reset an SNMP engine whose snmpEngineBoots value has
reached the value 2147483647, manual intervention is required. The
engine must be physically visited and re-configured, either with a
new snmpEngineID value, or with new secret values for the
authentication and privacy protocols of all users known to that SNMP
engine. Note that even if an SNMP engine re-boots once a second that
it would still take approximately 68 years before the max value of
2147483647 would be reached.
2.2.3. Time Window
The Time Window is a value that specifies the window of time in which
a message generated on behalf of any user is valid. This memo
specifies that the same value of the Time Window, 150 seconds, is
used for all users.
2.3. Time Synchronization
Time synchronization, required by a non-authoritative SNMP engine
in order to proceed with authentic communications, has occurred
when the non-authoritative SNMP engine has obtained a local notion
of the authoritative SNMP engine's values of snmpEngineBoots and
snmpEngineTime from the authoritative SNMP engine. These values
must be (and remain) within the authoritative SNMP engine's Time
Window. So the local notion of the authoritative SNMP engine's
values must be kept loosely synchronized with the values stored
at the authoritative SNMP engine. In addition to keeping a local
copy of snmpEngineBoots and snmpEngineTime from the authoritative
SNMP engine, a non-authoritative SNMP engine must also keep one
Blumenthal & Wijnen Standards Track [Page 15]
RFC 3414 USM for SNMPv3 December 2002
local variable, latestReceivedEngineTime. This value records the
highest value of snmpEngineTime that was received by the
non-authoritative SNMP engine from the authoritative SNMP engine
and is used to eliminate the possibility of replaying messages
that would prevent the non-authoritative SNMP engine's notion of
the snmpEngineTime from advancing.
A non-authoritative SNMP engine must keep local notions of these
values (snmpEngineBoots, snmpEngineTime and latestReceivedEngineTime)
for each authoritative SNMP engine with which it wishes to
communicate. Since each authoritative SNMP engine is uniquely and
unambiguously identified by its value of snmpEngineID, the
non-authoritative SNMP engine may use this value as a key in order to
cache its local notions of these values.
Time synchronization occurs as part of the procedures of receiving an
SNMP message (Section 3.2, step 7b). As such, no explicit time
synchronization procedure is required by a non-authoritative SNMP
engine. Note, that whenever the local value of snmpEngineID is
changed (e.g., through discovery) or when secure communications are
first established with an authoritative SNMP engine, the local values
of snmpEngineBoots and latestReceivedEngineTime should be set to
zero. This will cause the time synchronization to occur when the
next authentic message is received.
2.4. SNMP Messages Using this Security Model
The syntax of an SNMP message using this Security Model adheres to
the message format defined in the version-specific Message Processing
Model document (for example [RFC3412]).
The field msgSecurityParameters in SNMPv3 messages has a data type of
OCTET STRING. Its value is the BER serialization of the following
ASN.1 sequence:
USMSecurityParametersSyntax DEFINITIONS IMPLICIT TAGS ::= BEGIN
UsmSecurityParameters ::=
SEQUENCE {
-- global User-based security parameters
msgAuthoritativeEngineID OCTET STRING,
msgAuthoritativeEngineBoots INTEGER (0..2147483647),
msgAuthoritativeEngineTime INTEGER (0..2147483647),
msgUserName OCTET STRING (SIZE(0..32)),
-- authentication protocol specific parameters
msgAuthenticationParameters OCTET STRING,
-- privacy protocol specific parameters
msgPrivacyParameters OCTET STRING
Blumenthal & Wijnen Standards Track [Page 16]
RFC 3414 USM for SNMPv3 December 2002
}
END
The fields of this sequence are:
- The msgAuthoritativeEngineID specifies the snmpEngineID of the
authoritative SNMP engine involved in the exchange of the message.
- The msgAuthoritativeEngineBoots specifies the snmpEngineBoots value
at the authoritative SNMP engine involved in the exchange of the
message.
- The msgAuthoritativeEngineTime specifies the snmpEngineTime value
at the authoritative SNMP engine involved in the exchange of the
message.
- The msgUserName specifies the user (principal) on whose behalf the
message is being exchanged. Note that a zero-length userName will
not match any user, but it can be used for snmpEngineID discovery.
- The msgAuthenticationParameters are defined by the authentication
protocol in use for the message, as defined by the
usmUserAuthProtocol column in the user's entry in the usmUserTable.
- The msgPrivacyParameters are defined by the privacy protocol in use
for the message, as defined by the usmUserPrivProtocol column in
the user's entry in the usmUserTable).
See appendix A.4 for an example of the BER encoding of field
msgSecurityParameters.
2.5. Services provided by the User-based Security Model
This section describes the services provided by the User-based
Security Model with their inputs and outputs.
The services are described as primitives of an abstract service
interface and the inputs and outputs are described as abstract data
elements as they are passed in these abstract service primitives.
2.5.1. Services for Generating an Outgoing SNMP Message
When the Message Processing (MP) Subsystem invokes the User-based
Security module to secure an outgoing SNMP message, it must use the
appropriate service as provided by the Security module. These two
services are provided:
Blumenthal & Wijnen Standards Track [Page 17]
RFC 3414 USM for SNMPv3 December 2002
1) A service to generate a Request message. The abstract service
primitive is:
statusInformation = -- success or errorIndication
generateRequestMsg(
IN messageProcessingModel -- typically, SNMP version
IN globalData -- message header, admin data
IN maxMessageSize -- of the sending SNMP entity
IN securityModel -- for the outgoing message
IN securityEngineID -- authoritative SNMP entity
IN securityName -- on behalf of this principal
IN securityLevel -- Level of Security requested
IN scopedPDU -- message (plaintext) payload
OUT securityParameters -- filled in by Security Module
OUT wholeMsg -- complete generated message
OUT wholeMsgLength -- length of generated message
)
2) A service to generate a Response message. The abstract service
primitive is:
statusInformation = -- success or errorIndication
generateResponseMsg(
IN messageProcessingModel -- typically, SNMP version
IN globalData -- message header, admin data
IN maxMessageSize -- of the sending SNMP entity
IN securityModel -- for the outgoing message
IN securityEngineID -- authoritative SNMP entity
IN securityName -- on behalf of this principal
IN securityLevel -- Level of Security requested
IN scopedPDU -- message (plaintext) payload
IN securityStateReference -- reference to security state
-- information from original
-- request
OUT securityParameters -- filled in by Security Module
OUT wholeMsg -- complete generated message
OUT wholeMsgLength -- length of generated message
)
The abstract data elements passed as parameters in the abstract
service primitives are as follows:
statusInformation
An indication of whether the encoding and securing of the message
was successful. If not it is an indication of the problem.
Blumenthal & Wijnen Standards Track [Page 18]
RFC 3414 USM for SNMPv3 December 2002
messageProcessingModel
The SNMP version number for the message to be generated. This
data is not used by the User-based Security module.
globalData
The message header (i.e., its administrative information). This
data is not used by the User-based Security module.
maxMessageSize
The maximum message size as included in the message. This data is
not used by the User-based Security module.
securityParameters
These are the security parameters. They will be filled in by the
User-based Security module.
securityModel
The securityModel in use. Should be User-based Security Model.
This data is not used by the User-based Security module.
securityName
Together with the snmpEngineID it identifies a row in the
usmUserTablethat is to be used for securing the message. The
securityName has a format that is independent of the Security
Model. In case of a response this parameter is ignored and the
value from the cache is used.
securityLevel
The Level of Security from which the User-based Security module
determines if the message needs to be protected from disclosure
and if the message needs to be authenticated.
securityEngineID
The snmpEngineID of the authoritative SNMP engine to which a
dateRequest message is to be sent. In case of a response it is
implied to be the processing SNMP engine's snmpEngineID and so if
it is specified, then it is ignored.
scopedPDU
The message payload. The data is opaque as far as the User-based
Security Model is concerned.
securityStateReference
A handle/reference to cachedSecurityData to be used when securing
an outgoing Response message. This is the exact same
handle/reference as it was generated by the User-based Security
module when processing the incoming Request message to which this
is the Response message.
Blumenthal & Wijnen Standards Track [Page 19]
RFC 3414 USM for SNMPv3 December 2002
wholeMsg
The fully encoded and secured message ready for sending on the
wire.
wholeMsgLength
The length of the encoded and secured message (wholeMsg).
Upon completion of the process, the User-based Security module
returns statusInformation. If the process was successful, the
completed message with privacy and authentication applied if such was
requested by the specified securityLevel is returned. If the process
was not successful, then an errorIndication is returned.
2.5.2. Services for Processing an Incoming SNMP Message
When the Message Processing (MP) Subsystem invokes the User-based
Security module to verify proper security of an incoming message, it
must use the service provided for an incoming message. The abstract
service primitive is:
statusInformation = -- errorIndication or success
-- error counter OID/value if error
processIncomingMsg(
IN messageProcessingModel -- typically, SNMP version
IN maxMessageSize -- of the sending SNMP entity
IN securityParameters -- for the received message
IN securityModel -- for the received message
IN securityLevel -- Level of Security
IN wholeMsg -- as received on the wire
IN wholeMsgLength -- length as received on the wire
OUT securityEngineID -- authoritative SNMP entity
OUT securityName -- identification of the principal
OUT scopedPDU, -- message (plaintext) payload
OUT maxSizeResponseScopedPDU -- maximum size of the Response PDU
OUT securityStateReference -- reference to security state
) -- information, needed for response
The abstract data elements passed as parameters in the abstract
service primitives are as follows:
statusInformation
An indication of whether the process was successful or not. If
not, then the statusInformation includes the OID and the value of
the error counter that was incremented.
messageProcessingModel
The SNMP version number as received in the message. This data is
not used by the User-based Security module.
Blumenthal & Wijnen Standards Track [Page 20]
RFC 3414 USM for SNMPv3 December 2002
maxMessageSize
The maximum message size as included in the message. The User-bas
User-based Security module uses this value to calculate the
maxSizeResponseScopedPDU.
securityParameters
These are the security parameters as received in the message.
securityModel
The securityModel in use. Should be the User-based Security
Model. This data is not used by the User-based Security module.
securityLevel
The Level of Security from which the User-based Security module
determines if the message needs to be protected from disclosure
and if the message needs to be authenticated.
wholeMsg
The whole message as it was received.
wholeMsgLength
The length of the message as it was received (wholeMsg).
securityEngineID
The snmpEngineID that was extracted from the field
msgAuthoritativeEngineID and that was used to lookup the secrets
in the usmUserTable.
securityName
The security name representing the user on whose beha